Metamath Proof Explorer


Theorem lplnset

Description: The set of lattice planes in a Hilbert lattice. (Contributed by NM, 16-Jun-2012)

Ref Expression
Hypotheses lplnset.b B=BaseK
lplnset.c C=K
lplnset.n N=LLinesK
lplnset.p P=LPlanesK
Assertion lplnset KAP=xB|yNyCx

Proof

Step Hyp Ref Expression
1 lplnset.b B=BaseK
2 lplnset.c C=K
3 lplnset.n N=LLinesK
4 lplnset.p P=LPlanesK
5 elex KAKV
6 fveq2 k=KBasek=BaseK
7 6 1 eqtr4di k=KBasek=B
8 fveq2 k=KLLinesk=LLinesK
9 8 3 eqtr4di k=KLLinesk=N
10 fveq2 k=Kk=K
11 10 2 eqtr4di k=Kk=C
12 11 breqd k=KykxyCx
13 9 12 rexeqbidv k=KyLLineskykxyNyCx
14 7 13 rabeqbidv k=KxBasek|yLLineskykx=xB|yNyCx
15 df-lplanes LPlanes=kVxBasek|yLLineskykx
16 1 fvexi BV
17 16 rabex xB|yNyCxV
18 14 15 17 fvmpt KVLPlanesK=xB|yNyCx
19 4 18 eqtrid KVP=xB|yNyCx
20 5 19 syl KAP=xB|yNyCx