Metamath Proof Explorer


Theorem lruneq

Description: If two surreals share a birthday, then the union of their left and right sets are equal. (Contributed by Scott Fenton, 17-Sep-2024)

Ref Expression
Assertion lruneq Could not format assertion : No typesetting found for |- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( ( _Left ` X ) u. ( _Right ` X ) ) = ( ( _Left ` Y ) u. ( _Right ` Y ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 fveq2 bdayX=bdayYOldbdayX=OldbdayY
2 1 3ad2ant3 XNoYNobdayX=bdayYOldbdayX=OldbdayY
3 lrold Could not format ( ( _Left ` X ) u. ( _Right ` X ) ) = ( _Old ` ( bday ` X ) ) : No typesetting found for |- ( ( _Left ` X ) u. ( _Right ` X ) ) = ( _Old ` ( bday ` X ) ) with typecode |-
4 lrold Could not format ( ( _Left ` Y ) u. ( _Right ` Y ) ) = ( _Old ` ( bday ` Y ) ) : No typesetting found for |- ( ( _Left ` Y ) u. ( _Right ` Y ) ) = ( _Old ` ( bday ` Y ) ) with typecode |-
5 2 3 4 3eqtr4g Could not format ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( ( _Left ` X ) u. ( _Right ` X ) ) = ( ( _Left ` Y ) u. ( _Right ` Y ) ) ) : No typesetting found for |- ( ( X e. No /\ Y e. No /\ ( bday ` X ) = ( bday ` Y ) ) -> ( ( _Left ` X ) u. ( _Right ` X ) ) = ( ( _Left ` Y ) u. ( _Right ` Y ) ) ) with typecode |-