| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oldssno |
|
| 2 |
1
|
sseli |
|
| 3 |
2
|
3ad2ant2 |
|
| 4 |
|
simp1l1 |
|
| 5 |
|
simp1l2 |
|
| 6 |
|
simp3 |
|
| 7 |
|
simp1r |
|
| 8 |
3 4 5 6 7
|
slttrd |
|
| 9 |
8
|
3exp |
|
| 10 |
9
|
imdistand |
|
| 11 |
|
fveq2 |
|
| 12 |
11
|
3ad2ant3 |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
eleq2d |
|
| 15 |
14
|
anbi1d |
|
| 16 |
10 15
|
sylibd |
|
| 17 |
|
leftval |
|
| 18 |
17
|
a1i |
|
| 19 |
18
|
eleq2d |
|
| 20 |
|
rabid |
|
| 21 |
19 20
|
bitrdi |
|
| 22 |
|
leftval |
|
| 23 |
22
|
a1i |
|
| 24 |
23
|
eleq2d |
|
| 25 |
|
rabid |
|
| 26 |
24 25
|
bitrdi |
|
| 27 |
16 21 26
|
3imtr4d |
|
| 28 |
27
|
ssrdv |
|
| 29 |
|
sltirr |
|
| 30 |
29
|
3ad2ant2 |
|
| 31 |
|
breq1 |
|
| 32 |
31
|
notbid |
|
| 33 |
30 32
|
syl5ibrcom |
|
| 34 |
33
|
con2d |
|
| 35 |
34
|
imp |
|
| 36 |
|
simpr |
|
| 37 |
|
lruneq |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
adantr |
|
| 40 |
39 36
|
difeq12d |
|
| 41 |
|
difundir |
|
| 42 |
|
difid |
|
| 43 |
42
|
uneq1i |
|
| 44 |
|
0un |
|
| 45 |
41 43 44
|
3eqtri |
|
| 46 |
|
incom |
|
| 47 |
|
lltropt |
|
| 48 |
|
ssltdisj |
|
| 49 |
47 48
|
mp1i |
|
| 50 |
46 49
|
eqtr3id |
|
| 51 |
|
disjdif2 |
|
| 52 |
50 51
|
syl |
|
| 53 |
45 52
|
eqtrid |
|
| 54 |
|
difundir |
|
| 55 |
|
difid |
|
| 56 |
55
|
uneq1i |
|
| 57 |
|
0un |
|
| 58 |
54 56 57
|
3eqtri |
|
| 59 |
|
incom |
|
| 60 |
|
lltropt |
|
| 61 |
|
ssltdisj |
|
| 62 |
60 61
|
mp1i |
|
| 63 |
59 62
|
eqtr3id |
|
| 64 |
|
disjdif2 |
|
| 65 |
63 64
|
syl |
|
| 66 |
58 65
|
eqtrid |
|
| 67 |
40 53 66
|
3eqtr3d |
|
| 68 |
36 67
|
oveq12d |
|
| 69 |
|
simpll1 |
|
| 70 |
|
lrcut |
|
| 71 |
69 70
|
syl |
|
| 72 |
|
simpll2 |
|
| 73 |
|
lrcut |
|
| 74 |
72 73
|
syl |
|
| 75 |
68 71 74
|
3eqtr3d |
|
| 76 |
35 75
|
mtand |
|
| 77 |
|
dfpss2 |
|
| 78 |
28 76 77
|
sylanbrc |
|
| 79 |
78
|
ex |
|
| 80 |
|
dfpss3 |
|
| 81 |
|
ssdif0 |
|
| 82 |
81
|
necon3bbii |
|
| 83 |
|
n0 |
|
| 84 |
82 83
|
bitri |
|
| 85 |
|
eldif |
|
| 86 |
22
|
a1i |
|
| 87 |
86
|
eleq2d |
|
| 88 |
87 25
|
bitrdi |
|
| 89 |
17
|
a1i |
|
| 90 |
89
|
eleq2d |
|
| 91 |
90 20
|
bitrdi |
|
| 92 |
91
|
notbid |
|
| 93 |
|
ianor |
|
| 94 |
92 93
|
bitrdi |
|
| 95 |
88 94
|
bi2anan9r |
|
| 96 |
95
|
3adant3 |
|
| 97 |
|
simprl |
|
| 98 |
|
simpl3 |
|
| 99 |
98
|
fveq2d |
|
| 100 |
97 99
|
eleqtrrd |
|
| 101 |
100
|
pm2.24d |
|
| 102 |
|
simpll1 |
|
| 103 |
|
oldssno |
|
| 104 |
103 97
|
sselid |
|
| 105 |
104
|
adantr |
|
| 106 |
|
simpll2 |
|
| 107 |
|
simpl1 |
|
| 108 |
|
slenlt |
|
| 109 |
107 104 108
|
syl2anc |
|
| 110 |
109
|
biimpar |
|
| 111 |
|
simplrr |
|
| 112 |
102 105 106 110 111
|
slelttrd |
|
| 113 |
112
|
ex |
|
| 114 |
101 113
|
jaod |
|
| 115 |
114
|
expimpd |
|
| 116 |
96 115
|
sylbid |
|
| 117 |
85 116
|
biimtrid |
|
| 118 |
117
|
exlimdv |
|
| 119 |
84 118
|
biimtrid |
|
| 120 |
119
|
adantld |
|
| 121 |
80 120
|
biimtrid |
|
| 122 |
79 121
|
impbid |
|