Step |
Hyp |
Ref |
Expression |
1 |
|
oldssno |
|
2 |
1
|
sseli |
|
3 |
2
|
3ad2ant2 |
|
4 |
|
simp1l1 |
|
5 |
|
simp1l2 |
|
6 |
|
simp3 |
|
7 |
|
simp1r |
|
8 |
3 4 5 6 7
|
slttrd |
|
9 |
8
|
3exp |
|
10 |
9
|
imdistand |
|
11 |
|
fveq2 |
|
12 |
11
|
3ad2ant3 |
|
13 |
12
|
adantr |
|
14 |
13
|
eleq2d |
|
15 |
14
|
anbi1d |
|
16 |
10 15
|
sylibd |
|
17 |
|
leftval |
|
18 |
17
|
a1i |
|
19 |
18
|
eleq2d |
|
20 |
|
rabid |
|
21 |
19 20
|
bitrdi |
|
22 |
|
leftval |
|
23 |
22
|
a1i |
|
24 |
23
|
eleq2d |
|
25 |
|
rabid |
|
26 |
24 25
|
bitrdi |
|
27 |
16 21 26
|
3imtr4d |
|
28 |
27
|
ssrdv |
|
29 |
|
sltirr |
|
30 |
29
|
3ad2ant2 |
|
31 |
|
breq1 |
|
32 |
31
|
notbid |
|
33 |
30 32
|
syl5ibrcom |
|
34 |
33
|
con2d |
|
35 |
34
|
imp |
|
36 |
|
simpr |
|
37 |
|
lruneq |
|
38 |
37
|
adantr |
|
39 |
38
|
adantr |
|
40 |
39 36
|
difeq12d |
|
41 |
|
difundir |
|
42 |
|
difid |
|
43 |
42
|
uneq1i |
|
44 |
|
0un |
|
45 |
41 43 44
|
3eqtri |
|
46 |
|
incom |
|
47 |
|
simpll1 |
|
48 |
|
lltropt |
|
49 |
|
ssltdisj |
|
50 |
47 48 49
|
3syl |
|
51 |
46 50
|
eqtr3id |
|
52 |
|
disjdif2 |
|
53 |
51 52
|
syl |
|
54 |
45 53
|
syl5eq |
|
55 |
|
difundir |
|
56 |
|
difid |
|
57 |
56
|
uneq1i |
|
58 |
|
0un |
|
59 |
55 57 58
|
3eqtri |
|
60 |
|
incom |
|
61 |
|
simpll2 |
|
62 |
|
lltropt |
|
63 |
|
ssltdisj |
|
64 |
61 62 63
|
3syl |
|
65 |
60 64
|
eqtr3id |
|
66 |
|
disjdif2 |
|
67 |
65 66
|
syl |
|
68 |
59 67
|
syl5eq |
|
69 |
40 54 68
|
3eqtr3d |
|
70 |
36 69
|
oveq12d |
|
71 |
|
lrcut |
|
72 |
47 71
|
syl |
|
73 |
|
lrcut |
|
74 |
61 73
|
syl |
|
75 |
70 72 74
|
3eqtr3d |
|
76 |
35 75
|
mtand |
|
77 |
|
dfpss2 |
|
78 |
28 76 77
|
sylanbrc |
|
79 |
78
|
ex |
|
80 |
|
dfpss3 |
|
81 |
|
ssdif0 |
|
82 |
81
|
necon3bbii |
|
83 |
|
n0 |
|
84 |
82 83
|
bitri |
|
85 |
|
eldif |
|
86 |
22
|
a1i |
|
87 |
86
|
eleq2d |
|
88 |
87 25
|
bitrdi |
|
89 |
17
|
a1i |
|
90 |
89
|
eleq2d |
|
91 |
90 20
|
bitrdi |
|
92 |
91
|
notbid |
|
93 |
|
ianor |
|
94 |
92 93
|
bitrdi |
|
95 |
88 94
|
bi2anan9r |
|
96 |
95
|
3adant3 |
|
97 |
|
simprl |
|
98 |
|
simpl3 |
|
99 |
98
|
fveq2d |
|
100 |
97 99
|
eleqtrrd |
|
101 |
100
|
pm2.24d |
|
102 |
|
simpll1 |
|
103 |
|
oldssno |
|
104 |
103 97
|
sselid |
|
105 |
104
|
adantr |
|
106 |
|
simpll2 |
|
107 |
|
simpl1 |
|
108 |
|
slenlt |
|
109 |
107 104 108
|
syl2anc |
|
110 |
109
|
biimpar |
|
111 |
|
simplrr |
|
112 |
102 105 106 110 111
|
slelttrd |
|
113 |
112
|
ex |
|
114 |
101 113
|
jaod |
|
115 |
114
|
expimpd |
|
116 |
96 115
|
sylbid |
|
117 |
85 116
|
syl5bi |
|
118 |
117
|
exlimdv |
|
119 |
84 118
|
syl5bi |
|
120 |
119
|
adantld |
|
121 |
80 120
|
syl5bi |
|
122 |
79 121
|
impbid |
|