Metamath Proof Explorer


Theorem sltlpss

Description: If two surreals share a birthday, then X iff the left set of X is a proper subset of the left set of Y . (Contributed by Scott Fenton, 17-Sep-2024)

Ref Expression
Assertion sltlpss ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( 𝑋 <s 𝑌 ↔ ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 oldssno ( O ‘ ( bday 𝑋 ) ) ⊆ No
2 1 sseli ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) → 𝑥 No )
3 2 3ad2ant2 ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑥 No )
4 simp1l1 ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑋 No )
5 simp1l2 ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑌 No )
6 simp3 ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑥 <s 𝑋 )
7 simp1r ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑋 <s 𝑌 )
8 3 4 5 6 7 slttrd ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑥 <s 𝑌 )
9 8 3exp ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) → ( 𝑥 <s 𝑋𝑥 <s 𝑌 ) ) )
10 9 imdistand ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑌 ) ) )
11 fveq2 ( ( bday 𝑋 ) = ( bday 𝑌 ) → ( O ‘ ( bday 𝑋 ) ) = ( O ‘ ( bday 𝑌 ) ) )
12 11 3ad2ant3 ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( O ‘ ( bday 𝑋 ) ) = ( O ‘ ( bday 𝑌 ) ) )
13 12 adantr ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( O ‘ ( bday 𝑋 ) ) = ( O ‘ ( bday 𝑌 ) ) )
14 13 eleq2d ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ↔ 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ) )
15 14 anbi1d ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑌 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) )
16 10 15 sylibd ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) )
17 leftval ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 }
18 17 a1i ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 } )
19 18 eleq2d ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) )
20 rabid ( 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) )
21 19 20 bitrdi ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) )
22 leftval ( L ‘ 𝑌 ) = { 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∣ 𝑥 <s 𝑌 }
23 22 a1i ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( L ‘ 𝑌 ) = { 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∣ 𝑥 <s 𝑌 } )
24 23 eleq2d ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑌 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∣ 𝑥 <s 𝑌 } ) )
25 rabid ( 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∣ 𝑥 <s 𝑌 } ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) )
26 24 25 bitrdi ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑌 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) )
27 16 21 26 3imtr4d ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) → 𝑥 ∈ ( L ‘ 𝑌 ) ) )
28 27 ssrdv ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( L ‘ 𝑋 ) ⊆ ( L ‘ 𝑌 ) )
29 sltirr ( 𝑌 No → ¬ 𝑌 <s 𝑌 )
30 29 3ad2ant2 ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ¬ 𝑌 <s 𝑌 )
31 breq1 ( 𝑋 = 𝑌 → ( 𝑋 <s 𝑌𝑌 <s 𝑌 ) )
32 31 notbid ( 𝑋 = 𝑌 → ( ¬ 𝑋 <s 𝑌 ↔ ¬ 𝑌 <s 𝑌 ) )
33 30 32 syl5ibrcom ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( 𝑋 = 𝑌 → ¬ 𝑋 <s 𝑌 ) )
34 33 con2d ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( 𝑋 <s 𝑌 → ¬ 𝑋 = 𝑌 ) )
35 34 imp ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ¬ 𝑋 = 𝑌 )
36 simpr ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) )
37 lruneq ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) = ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) )
38 37 adantr ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) = ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) )
39 38 adantr ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) = ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) )
40 39 36 difeq12d ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) ∖ ( L ‘ 𝑋 ) ) = ( ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ∖ ( L ‘ 𝑌 ) ) )
41 difundir ( ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) ∖ ( L ‘ 𝑋 ) ) = ( ( ( L ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ∪ ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) )
42 difid ( ( L ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) = ∅
43 42 uneq1i ( ( ( L ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ∪ ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ) = ( ∅ ∪ ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) )
44 0un ( ∅ ∪ ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ) = ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) )
45 41 43 44 3eqtri ( ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) ∖ ( L ‘ 𝑋 ) ) = ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) )
46 incom ( ( L ‘ 𝑋 ) ∩ ( R ‘ 𝑋 ) ) = ( ( R ‘ 𝑋 ) ∩ ( L ‘ 𝑋 ) )
47 simpll1 ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → 𝑋 No )
48 lltropt ( 𝑋 No → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) )
49 ssltdisj ( ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) → ( ( L ‘ 𝑋 ) ∩ ( R ‘ 𝑋 ) ) = ∅ )
50 47 48 49 3syl ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) ∩ ( R ‘ 𝑋 ) ) = ∅ )
51 46 50 eqtr3id ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( R ‘ 𝑋 ) ∩ ( L ‘ 𝑋 ) ) = ∅ )
52 disjdif2 ( ( ( R ‘ 𝑋 ) ∩ ( L ‘ 𝑋 ) ) = ∅ → ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) = ( R ‘ 𝑋 ) )
53 51 52 syl ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) = ( R ‘ 𝑋 ) )
54 45 53 syl5eq ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) ∖ ( L ‘ 𝑋 ) ) = ( R ‘ 𝑋 ) )
55 difundir ( ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ∖ ( L ‘ 𝑌 ) ) = ( ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ∪ ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) )
56 difid ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) = ∅
57 56 uneq1i ( ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ∪ ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ) = ( ∅ ∪ ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) )
58 0un ( ∅ ∪ ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ) = ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) )
59 55 57 58 3eqtri ( ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ∖ ( L ‘ 𝑌 ) ) = ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) )
60 incom ( ( L ‘ 𝑌 ) ∩ ( R ‘ 𝑌 ) ) = ( ( R ‘ 𝑌 ) ∩ ( L ‘ 𝑌 ) )
61 simpll2 ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → 𝑌 No )
62 lltropt ( 𝑌 No → ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) )
63 ssltdisj ( ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) → ( ( L ‘ 𝑌 ) ∩ ( R ‘ 𝑌 ) ) = ∅ )
64 61 62 63 3syl ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑌 ) ∩ ( R ‘ 𝑌 ) ) = ∅ )
65 60 64 eqtr3id ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( R ‘ 𝑌 ) ∩ ( L ‘ 𝑌 ) ) = ∅ )
66 disjdif2 ( ( ( R ‘ 𝑌 ) ∩ ( L ‘ 𝑌 ) ) = ∅ → ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) = ( R ‘ 𝑌 ) )
67 65 66 syl ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) = ( R ‘ 𝑌 ) )
68 59 67 syl5eq ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ∖ ( L ‘ 𝑌 ) ) = ( R ‘ 𝑌 ) )
69 40 54 68 3eqtr3d ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( R ‘ 𝑋 ) = ( R ‘ 𝑌 ) )
70 36 69 oveq12d ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) )
71 lrcut ( 𝑋 No → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 )
72 47 71 syl ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 )
73 lrcut ( 𝑌 No → ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) = 𝑌 )
74 61 73 syl ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) = 𝑌 )
75 70 72 74 3eqtr3d ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → 𝑋 = 𝑌 )
76 35 75 mtand ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ¬ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) )
77 dfpss2 ( ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ↔ ( ( L ‘ 𝑋 ) ⊆ ( L ‘ 𝑌 ) ∧ ¬ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) )
78 28 76 77 sylanbrc ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) )
79 78 ex ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( 𝑋 <s 𝑌 → ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ) )
80 dfpss3 ( ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ↔ ( ( L ‘ 𝑋 ) ⊆ ( L ‘ 𝑌 ) ∧ ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ) )
81 ssdif0 ( ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ↔ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) = ∅ )
82 81 necon3bbii ( ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ↔ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) ≠ ∅ )
83 n0 ( ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) )
84 82 83 bitri ( ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ↔ ∃ 𝑥 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) )
85 eldif ( 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) ↔ ( 𝑥 ∈ ( L ‘ 𝑌 ) ∧ ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ) )
86 22 a1i ( 𝑌 No → ( L ‘ 𝑌 ) = { 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∣ 𝑥 <s 𝑌 } )
87 86 eleq2d ( 𝑌 No → ( 𝑥 ∈ ( L ‘ 𝑌 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∣ 𝑥 <s 𝑌 } ) )
88 87 25 bitrdi ( 𝑌 No → ( 𝑥 ∈ ( L ‘ 𝑌 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) )
89 17 a1i ( 𝑋 No → ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 } )
90 89 eleq2d ( 𝑋 No → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) )
91 90 20 bitrdi ( 𝑋 No → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) )
92 91 notbid ( 𝑋 No → ( ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ¬ ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) )
93 ianor ( ¬ ( 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ↔ ( ¬ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) )
94 92 93 bitrdi ( 𝑋 No → ( ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( ¬ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) ) )
95 88 94 bi2anan9r ( ( 𝑋 No 𝑌 No ) → ( ( 𝑥 ∈ ( L ‘ 𝑌 ) ∧ ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ) ↔ ( ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ∧ ( ¬ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) ) ) )
96 95 3adant3 ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( ( 𝑥 ∈ ( L ‘ 𝑌 ) ∧ ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ) ↔ ( ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ∧ ( ¬ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) ) ) )
97 simprl ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) )
98 simpl3 ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( bday 𝑋 ) = ( bday 𝑌 ) )
99 98 fveq2d ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( O ‘ ( bday 𝑋 ) ) = ( O ‘ ( bday 𝑌 ) ) )
100 97 99 eleqtrrd ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) )
101 100 pm2.24d ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( ¬ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) → 𝑋 <s 𝑌 ) )
102 simpll1 ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑋 No )
103 oldssno ( O ‘ ( bday 𝑌 ) ) ⊆ No
104 103 97 sselid ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → 𝑥 No )
105 104 adantr ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑥 No )
106 simpll2 ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑌 No )
107 simpl1 ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → 𝑋 No )
108 slenlt ( ( 𝑋 No 𝑥 No ) → ( 𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋 ) )
109 107 104 108 syl2anc ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( 𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋 ) )
110 109 biimpar ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑋 ≤s 𝑥 )
111 simplrr ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑥 <s 𝑌 )
112 102 105 106 110 111 slelttrd ( ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑋 <s 𝑌 )
113 112 ex ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( ¬ 𝑥 <s 𝑋𝑋 <s 𝑌 ) )
114 101 113 jaod ( ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( ( ¬ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) → 𝑋 <s 𝑌 ) )
115 114 expimpd ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( ( ( 𝑥 ∈ ( O ‘ ( bday 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ∧ ( ¬ 𝑥 ∈ ( O ‘ ( bday 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) ) → 𝑋 <s 𝑌 ) )
116 96 115 sylbid ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( ( 𝑥 ∈ ( L ‘ 𝑌 ) ∧ ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ) → 𝑋 <s 𝑌 ) )
117 85 116 syl5bi ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) → 𝑋 <s 𝑌 ) )
118 117 exlimdv ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( ∃ 𝑥 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) → 𝑋 <s 𝑌 ) )
119 84 118 syl5bi ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) → 𝑋 <s 𝑌 ) )
120 119 adantld ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( ( ( L ‘ 𝑋 ) ⊆ ( L ‘ 𝑌 ) ∧ ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ) → 𝑋 <s 𝑌 ) )
121 80 120 syl5bi ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) → 𝑋 <s 𝑌 ) )
122 79 121 impbid ( ( 𝑋 No 𝑌 No ∧ ( bday 𝑋 ) = ( bday 𝑌 ) ) → ( 𝑋 <s 𝑌 ↔ ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ) )