Step |
Hyp |
Ref |
Expression |
1 |
|
oldssno |
âĒ ( O â ( bday â ð ) ) â No |
2 |
1
|
sseli |
âĒ ( ðĨ â ( O â ( bday â ð ) ) â ðĨ â No ) |
3 |
2
|
3ad2ant2 |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ðĨ â No ) |
4 |
|
simp1l1 |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ð â No ) |
5 |
|
simp1l2 |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ð â No ) |
6 |
|
simp3 |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ðĨ <s ð ) |
7 |
|
simp1r |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ð <s ð ) |
8 |
3 4 5 6 7
|
slttrd |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ðĨ <s ð ) |
9 |
8
|
3exp |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ðĨ â ( O â ( bday â ð ) ) â ( ðĨ <s ð â ðĨ <s ð ) ) ) |
10 |
9
|
imdistand |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ) |
11 |
|
fveq2 |
âĒ ( ( bday â ð ) = ( bday â ð ) â ( O â ( bday â ð ) ) = ( O â ( bday â ð ) ) ) |
12 |
11
|
3ad2ant3 |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( O â ( bday â ð ) ) = ( O â ( bday â ð ) ) ) |
13 |
12
|
adantr |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( O â ( bday â ð ) ) = ( O â ( bday â ð ) ) ) |
14 |
13
|
eleq2d |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ðĨ â ( O â ( bday â ð ) ) â ðĨ â ( O â ( bday â ð ) ) ) ) |
15 |
14
|
anbi1d |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ) |
16 |
10 15
|
sylibd |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ) |
17 |
|
leftval |
âĒ ( L â ð ) = { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } |
18 |
17
|
a1i |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( L â ð ) = { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } ) |
19 |
18
|
eleq2d |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ðĨ â ( L â ð ) â ðĨ â { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } ) ) |
20 |
|
rabid |
âĒ ( ðĨ â { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } â ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) |
21 |
19 20
|
bitrdi |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ðĨ â ( L â ð ) â ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ) |
22 |
|
leftval |
âĒ ( L â ð ) = { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } |
23 |
22
|
a1i |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( L â ð ) = { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } ) |
24 |
23
|
eleq2d |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ðĨ â ( L â ð ) â ðĨ â { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } ) ) |
25 |
|
rabid |
âĒ ( ðĨ â { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } â ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) |
26 |
24 25
|
bitrdi |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ðĨ â ( L â ð ) â ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ) |
27 |
16 21 26
|
3imtr4d |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ðĨ â ( L â ð ) â ðĨ â ( L â ð ) ) ) |
28 |
27
|
ssrdv |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( L â ð ) â ( L â ð ) ) |
29 |
|
sltirr |
âĒ ( ð â No â ÂŽ ð <s ð ) |
30 |
29
|
3ad2ant2 |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ÂŽ ð <s ð ) |
31 |
|
breq1 |
âĒ ( ð = ð â ( ð <s ð â ð <s ð ) ) |
32 |
31
|
notbid |
âĒ ( ð = ð â ( ÂŽ ð <s ð â ÂŽ ð <s ð ) ) |
33 |
30 32
|
syl5ibrcom |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ð = ð â ÂŽ ð <s ð ) ) |
34 |
33
|
con2d |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ð <s ð â ÂŽ ð = ð ) ) |
35 |
34
|
imp |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ÂŽ ð = ð ) |
36 |
|
simpr |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( L â ð ) = ( L â ð ) ) |
37 |
|
lruneq |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ( L â ð ) ⊠( R â ð ) ) = ( ( L â ð ) ⊠( R â ð ) ) ) |
38 |
37
|
adantr |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( ( L â ð ) ⊠( R â ð ) ) = ( ( L â ð ) ⊠( R â ð ) ) ) |
39 |
38
|
adantr |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( L â ð ) ⊠( R â ð ) ) = ( ( L â ð ) ⊠( R â ð ) ) ) |
40 |
39 36
|
difeq12d |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( ( L â ð ) ⊠( R â ð ) ) â ( L â ð ) ) = ( ( ( L â ð ) ⊠( R â ð ) ) â ( L â ð ) ) ) |
41 |
|
difundir |
âĒ ( ( ( L â ð ) ⊠( R â ð ) ) â ( L â ð ) ) = ( ( ( L â ð ) â ( L â ð ) ) ⊠( ( R â ð ) â ( L â ð ) ) ) |
42 |
|
difid |
âĒ ( ( L â ð ) â ( L â ð ) ) = â
|
43 |
42
|
uneq1i |
âĒ ( ( ( L â ð ) â ( L â ð ) ) ⊠( ( R â ð ) â ( L â ð ) ) ) = ( â
⊠( ( R â ð ) â ( L â ð ) ) ) |
44 |
|
0un |
âĒ ( â
⊠( ( R â ð ) â ( L â ð ) ) ) = ( ( R â ð ) â ( L â ð ) ) |
45 |
41 43 44
|
3eqtri |
âĒ ( ( ( L â ð ) ⊠( R â ð ) ) â ( L â ð ) ) = ( ( R â ð ) â ( L â ð ) ) |
46 |
|
incom |
âĒ ( ( L â ð ) âĐ ( R â ð ) ) = ( ( R â ð ) âĐ ( L â ð ) ) |
47 |
|
lltropt |
âĒ ( L â ð ) <<s ( R â ð ) |
48 |
|
ssltdisj |
âĒ ( ( L â ð ) <<s ( R â ð ) â ( ( L â ð ) âĐ ( R â ð ) ) = â
) |
49 |
47 48
|
mp1i |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( L â ð ) âĐ ( R â ð ) ) = â
) |
50 |
46 49
|
eqtr3id |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( R â ð ) âĐ ( L â ð ) ) = â
) |
51 |
|
disjdif2 |
âĒ ( ( ( R â ð ) âĐ ( L â ð ) ) = â
â ( ( R â ð ) â ( L â ð ) ) = ( R â ð ) ) |
52 |
50 51
|
syl |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( R â ð ) â ( L â ð ) ) = ( R â ð ) ) |
53 |
45 52
|
eqtrid |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( ( L â ð ) ⊠( R â ð ) ) â ( L â ð ) ) = ( R â ð ) ) |
54 |
|
difundir |
âĒ ( ( ( L â ð ) ⊠( R â ð ) ) â ( L â ð ) ) = ( ( ( L â ð ) â ( L â ð ) ) ⊠( ( R â ð ) â ( L â ð ) ) ) |
55 |
|
difid |
âĒ ( ( L â ð ) â ( L â ð ) ) = â
|
56 |
55
|
uneq1i |
âĒ ( ( ( L â ð ) â ( L â ð ) ) ⊠( ( R â ð ) â ( L â ð ) ) ) = ( â
⊠( ( R â ð ) â ( L â ð ) ) ) |
57 |
|
0un |
âĒ ( â
⊠( ( R â ð ) â ( L â ð ) ) ) = ( ( R â ð ) â ( L â ð ) ) |
58 |
54 56 57
|
3eqtri |
âĒ ( ( ( L â ð ) ⊠( R â ð ) ) â ( L â ð ) ) = ( ( R â ð ) â ( L â ð ) ) |
59 |
|
incom |
âĒ ( ( L â ð ) âĐ ( R â ð ) ) = ( ( R â ð ) âĐ ( L â ð ) ) |
60 |
|
lltropt |
âĒ ( L â ð ) <<s ( R â ð ) |
61 |
|
ssltdisj |
âĒ ( ( L â ð ) <<s ( R â ð ) â ( ( L â ð ) âĐ ( R â ð ) ) = â
) |
62 |
60 61
|
mp1i |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( L â ð ) âĐ ( R â ð ) ) = â
) |
63 |
59 62
|
eqtr3id |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( R â ð ) âĐ ( L â ð ) ) = â
) |
64 |
|
disjdif2 |
âĒ ( ( ( R â ð ) âĐ ( L â ð ) ) = â
â ( ( R â ð ) â ( L â ð ) ) = ( R â ð ) ) |
65 |
63 64
|
syl |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( R â ð ) â ( L â ð ) ) = ( R â ð ) ) |
66 |
58 65
|
eqtrid |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( ( L â ð ) ⊠( R â ð ) ) â ( L â ð ) ) = ( R â ð ) ) |
67 |
40 53 66
|
3eqtr3d |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( R â ð ) = ( R â ð ) ) |
68 |
36 67
|
oveq12d |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( L â ð ) |s ( R â ð ) ) = ( ( L â ð ) |s ( R â ð ) ) ) |
69 |
|
simpll1 |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ð â No ) |
70 |
|
lrcut |
âĒ ( ð â No â ( ( L â ð ) |s ( R â ð ) ) = ð ) |
71 |
69 70
|
syl |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( L â ð ) |s ( R â ð ) ) = ð ) |
72 |
|
simpll2 |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ð â No ) |
73 |
|
lrcut |
âĒ ( ð â No â ( ( L â ð ) |s ( R â ð ) ) = ð ) |
74 |
72 73
|
syl |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ( ( L â ð ) |s ( R â ð ) ) = ð ) |
75 |
68 71 74
|
3eqtr3d |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) ⧠( L â ð ) = ( L â ð ) ) â ð = ð ) |
76 |
35 75
|
mtand |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ÂŽ ( L â ð ) = ( L â ð ) ) |
77 |
|
dfpss2 |
âĒ ( ( L â ð ) â ( L â ð ) â ( ( L â ð ) â ( L â ð ) ⧠Ž ( L â ð ) = ( L â ð ) ) ) |
78 |
28 76 77
|
sylanbrc |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠ð <s ð ) â ( L â ð ) â ( L â ð ) ) |
79 |
78
|
ex |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ð <s ð â ( L â ð ) â ( L â ð ) ) ) |
80 |
|
dfpss3 |
âĒ ( ( L â ð ) â ( L â ð ) â ( ( L â ð ) â ( L â ð ) ⧠Ž ( L â ð ) â ( L â ð ) ) ) |
81 |
|
ssdif0 |
âĒ ( ( L â ð ) â ( L â ð ) â ( ( L â ð ) â ( L â ð ) ) = â
) |
82 |
81
|
necon3bbii |
âĒ ( ÂŽ ( L â ð ) â ( L â ð ) â ( ( L â ð ) â ( L â ð ) ) â â
) |
83 |
|
n0 |
âĒ ( ( ( L â ð ) â ( L â ð ) ) â â
â â ðĨ ðĨ â ( ( L â ð ) â ( L â ð ) ) ) |
84 |
82 83
|
bitri |
âĒ ( ÂŽ ( L â ð ) â ( L â ð ) â â ðĨ ðĨ â ( ( L â ð ) â ( L â ð ) ) ) |
85 |
|
eldif |
âĒ ( ðĨ â ( ( L â ð ) â ( L â ð ) ) â ( ðĨ â ( L â ð ) ⧠Ž ðĨ â ( L â ð ) ) ) |
86 |
22
|
a1i |
âĒ ( ð â No â ( L â ð ) = { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } ) |
87 |
86
|
eleq2d |
âĒ ( ð â No â ( ðĨ â ( L â ð ) â ðĨ â { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } ) ) |
88 |
87 25
|
bitrdi |
âĒ ( ð â No â ( ðĨ â ( L â ð ) â ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ) |
89 |
17
|
a1i |
âĒ ( ð â No â ( L â ð ) = { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } ) |
90 |
89
|
eleq2d |
âĒ ( ð â No â ( ðĨ â ( L â ð ) â ðĨ â { ðĨ â ( O â ( bday â ð ) ) âĢ ðĨ <s ð } ) ) |
91 |
90 20
|
bitrdi |
âĒ ( ð â No â ( ðĨ â ( L â ð ) â ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ) |
92 |
91
|
notbid |
âĒ ( ð â No â ( ÂŽ ðĨ â ( L â ð ) â ÂŽ ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ) |
93 |
|
ianor |
âĒ ( ÂŽ ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) â ( ÂŽ ðĨ â ( O â ( bday â ð ) ) âĻ ÂŽ ðĨ <s ð ) ) |
94 |
92 93
|
bitrdi |
âĒ ( ð â No â ( ÂŽ ðĨ â ( L â ð ) â ( ÂŽ ðĨ â ( O â ( bday â ð ) ) âĻ ÂŽ ðĨ <s ð ) ) ) |
95 |
88 94
|
bi2anan9r |
âĒ ( ( ð â No ⧠ð â No ) â ( ( ðĨ â ( L â ð ) ⧠Ž ðĨ â ( L â ð ) ) â ( ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ⧠( ÂŽ ðĨ â ( O â ( bday â ð ) ) âĻ ÂŽ ðĨ <s ð ) ) ) ) |
96 |
95
|
3adant3 |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ( ðĨ â ( L â ð ) ⧠Ž ðĨ â ( L â ð ) ) â ( ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ⧠( ÂŽ ðĨ â ( O â ( bday â ð ) ) âĻ ÂŽ ðĨ <s ð ) ) ) ) |
97 |
|
simprl |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ðĨ â ( O â ( bday â ð ) ) ) |
98 |
|
simpl3 |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ( bday â ð ) = ( bday â ð ) ) |
99 |
98
|
fveq2d |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ( O â ( bday â ð ) ) = ( O â ( bday â ð ) ) ) |
100 |
97 99
|
eleqtrrd |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ðĨ â ( O â ( bday â ð ) ) ) |
101 |
100
|
pm2.24d |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ( ÂŽ ðĨ â ( O â ( bday â ð ) ) â ð <s ð ) ) |
102 |
|
simpll1 |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ⧠Ž ðĨ <s ð ) â ð â No ) |
103 |
|
oldssno |
âĒ ( O â ( bday â ð ) ) â No |
104 |
103 97
|
sselid |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ðĨ â No ) |
105 |
104
|
adantr |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ⧠Ž ðĨ <s ð ) â ðĨ â No ) |
106 |
|
simpll2 |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ⧠Ž ðĨ <s ð ) â ð â No ) |
107 |
|
simpl1 |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ð â No ) |
108 |
|
slenlt |
âĒ ( ( ð â No ⧠ðĨ â No ) â ( ð âĪs ðĨ â ÂŽ ðĨ <s ð ) ) |
109 |
107 104 108
|
syl2anc |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ( ð âĪs ðĨ â ÂŽ ðĨ <s ð ) ) |
110 |
109
|
biimpar |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ⧠Ž ðĨ <s ð ) â ð âĪs ðĨ ) |
111 |
|
simplrr |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ⧠Ž ðĨ <s ð ) â ðĨ <s ð ) |
112 |
102 105 106 110 111
|
slelttrd |
âĒ ( ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) ⧠Ž ðĨ <s ð ) â ð <s ð ) |
113 |
112
|
ex |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ( ÂŽ ðĨ <s ð â ð <s ð ) ) |
114 |
101 113
|
jaod |
âĒ ( ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) ⧠( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ) â ( ( ÂŽ ðĨ â ( O â ( bday â ð ) ) âĻ ÂŽ ðĨ <s ð ) â ð <s ð ) ) |
115 |
114
|
expimpd |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ( ( ðĨ â ( O â ( bday â ð ) ) ⧠ðĨ <s ð ) ⧠( ÂŽ ðĨ â ( O â ( bday â ð ) ) âĻ ÂŽ ðĨ <s ð ) ) â ð <s ð ) ) |
116 |
96 115
|
sylbid |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ( ðĨ â ( L â ð ) ⧠Ž ðĨ â ( L â ð ) ) â ð <s ð ) ) |
117 |
85 116
|
biimtrid |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ðĨ â ( ( L â ð ) â ( L â ð ) ) â ð <s ð ) ) |
118 |
117
|
exlimdv |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( â ðĨ ðĨ â ( ( L â ð ) â ( L â ð ) ) â ð <s ð ) ) |
119 |
84 118
|
biimtrid |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ÂŽ ( L â ð ) â ( L â ð ) â ð <s ð ) ) |
120 |
119
|
adantld |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ( ( L â ð ) â ( L â ð ) ⧠Ž ( L â ð ) â ( L â ð ) ) â ð <s ð ) ) |
121 |
80 120
|
biimtrid |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ( L â ð ) â ( L â ð ) â ð <s ð ) ) |
122 |
79 121
|
impbid |
âĒ ( ( ð â No ⧠ð â No ⧠( bday â ð ) = ( bday â ð ) ) â ( ð <s ð â ( L â ð ) â ( L â ð ) ) ) |