Step |
Hyp |
Ref |
Expression |
1 |
|
oldssno |
⊢ ( O ‘ ( bday ‘ 𝑋 ) ) ⊆ No |
2 |
1
|
sseli |
⊢ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝑥 ∈ No ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑥 ∈ No ) |
4 |
|
simp1l1 |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑋 ∈ No ) |
5 |
|
simp1l2 |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑌 ∈ No ) |
6 |
|
simp3 |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑥 <s 𝑋 ) |
7 |
|
simp1r |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑋 <s 𝑌 ) |
8 |
3 4 5 6 7
|
slttrd |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → 𝑥 <s 𝑌 ) |
9 |
8
|
3exp |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → ( 𝑥 <s 𝑋 → 𝑥 <s 𝑌 ) ) ) |
10 |
9
|
imdistand |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑌 ) ) ) |
11 |
|
fveq2 |
⊢ ( ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) → ( O ‘ ( bday ‘ 𝑋 ) ) = ( O ‘ ( bday ‘ 𝑌 ) ) ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( O ‘ ( bday ‘ 𝑋 ) ) = ( O ‘ ( bday ‘ 𝑌 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( O ‘ ( bday ‘ 𝑋 ) ) = ( O ‘ ( bday ‘ 𝑌 ) ) ) |
14 |
13
|
eleq2d |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ↔ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ) ) |
15 |
14
|
anbi1d |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑌 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ) |
16 |
10 15
|
sylibd |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) → ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ) |
17 |
|
leftval |
⊢ ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } |
18 |
17
|
a1i |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) |
19 |
18
|
eleq2d |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) ) |
20 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) |
21 |
19 20
|
bitrdi |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) ) |
22 |
|
leftval |
⊢ ( L ‘ 𝑌 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑥 <s 𝑌 } |
23 |
22
|
a1i |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( L ‘ 𝑌 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑥 <s 𝑌 } ) |
24 |
23
|
eleq2d |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑌 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑥 <s 𝑌 } ) ) |
25 |
|
rabid |
⊢ ( 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑥 <s 𝑌 } ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) |
26 |
24 25
|
bitrdi |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑌 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ) |
27 |
16 21 26
|
3imtr4d |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( 𝑥 ∈ ( L ‘ 𝑋 ) → 𝑥 ∈ ( L ‘ 𝑌 ) ) ) |
28 |
27
|
ssrdv |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( L ‘ 𝑋 ) ⊆ ( L ‘ 𝑌 ) ) |
29 |
|
sltirr |
⊢ ( 𝑌 ∈ No → ¬ 𝑌 <s 𝑌 ) |
30 |
29
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ¬ 𝑌 <s 𝑌 ) |
31 |
|
breq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 <s 𝑌 ↔ 𝑌 <s 𝑌 ) ) |
32 |
31
|
notbid |
⊢ ( 𝑋 = 𝑌 → ( ¬ 𝑋 <s 𝑌 ↔ ¬ 𝑌 <s 𝑌 ) ) |
33 |
30 32
|
syl5ibrcom |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( 𝑋 = 𝑌 → ¬ 𝑋 <s 𝑌 ) ) |
34 |
33
|
con2d |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( 𝑋 <s 𝑌 → ¬ 𝑋 = 𝑌 ) ) |
35 |
34
|
imp |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ¬ 𝑋 = 𝑌 ) |
36 |
|
simpr |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) |
37 |
|
lruneq |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) = ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) = ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ) |
39 |
38
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) = ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ) |
40 |
39 36
|
difeq12d |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) ∖ ( L ‘ 𝑋 ) ) = ( ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ∖ ( L ‘ 𝑌 ) ) ) |
41 |
|
difundir |
⊢ ( ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) ∖ ( L ‘ 𝑋 ) ) = ( ( ( L ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ∪ ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ) |
42 |
|
difid |
⊢ ( ( L ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) = ∅ |
43 |
42
|
uneq1i |
⊢ ( ( ( L ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ∪ ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ) = ( ∅ ∪ ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ) |
44 |
|
0un |
⊢ ( ∅ ∪ ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) ) = ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) |
45 |
41 43 44
|
3eqtri |
⊢ ( ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) ∖ ( L ‘ 𝑋 ) ) = ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) |
46 |
|
incom |
⊢ ( ( L ‘ 𝑋 ) ∩ ( R ‘ 𝑋 ) ) = ( ( R ‘ 𝑋 ) ∩ ( L ‘ 𝑋 ) ) |
47 |
|
simpll1 |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → 𝑋 ∈ No ) |
48 |
|
lltropt |
⊢ ( 𝑋 ∈ No → ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) ) |
49 |
|
ssltdisj |
⊢ ( ( L ‘ 𝑋 ) <<s ( R ‘ 𝑋 ) → ( ( L ‘ 𝑋 ) ∩ ( R ‘ 𝑋 ) ) = ∅ ) |
50 |
47 48 49
|
3syl |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) ∩ ( R ‘ 𝑋 ) ) = ∅ ) |
51 |
46 50
|
eqtr3id |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( R ‘ 𝑋 ) ∩ ( L ‘ 𝑋 ) ) = ∅ ) |
52 |
|
disjdif2 |
⊢ ( ( ( R ‘ 𝑋 ) ∩ ( L ‘ 𝑋 ) ) = ∅ → ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) = ( R ‘ 𝑋 ) ) |
53 |
51 52
|
syl |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( R ‘ 𝑋 ) ∖ ( L ‘ 𝑋 ) ) = ( R ‘ 𝑋 ) ) |
54 |
45 53
|
syl5eq |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( ( L ‘ 𝑋 ) ∪ ( R ‘ 𝑋 ) ) ∖ ( L ‘ 𝑋 ) ) = ( R ‘ 𝑋 ) ) |
55 |
|
difundir |
⊢ ( ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ∖ ( L ‘ 𝑌 ) ) = ( ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ∪ ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ) |
56 |
|
difid |
⊢ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) = ∅ |
57 |
56
|
uneq1i |
⊢ ( ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ∪ ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ) = ( ∅ ∪ ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ) |
58 |
|
0un |
⊢ ( ∅ ∪ ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) ) = ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) |
59 |
55 57 58
|
3eqtri |
⊢ ( ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ∖ ( L ‘ 𝑌 ) ) = ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) |
60 |
|
incom |
⊢ ( ( L ‘ 𝑌 ) ∩ ( R ‘ 𝑌 ) ) = ( ( R ‘ 𝑌 ) ∩ ( L ‘ 𝑌 ) ) |
61 |
|
simpll2 |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → 𝑌 ∈ No ) |
62 |
|
lltropt |
⊢ ( 𝑌 ∈ No → ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) ) |
63 |
|
ssltdisj |
⊢ ( ( L ‘ 𝑌 ) <<s ( R ‘ 𝑌 ) → ( ( L ‘ 𝑌 ) ∩ ( R ‘ 𝑌 ) ) = ∅ ) |
64 |
61 62 63
|
3syl |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑌 ) ∩ ( R ‘ 𝑌 ) ) = ∅ ) |
65 |
60 64
|
eqtr3id |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( R ‘ 𝑌 ) ∩ ( L ‘ 𝑌 ) ) = ∅ ) |
66 |
|
disjdif2 |
⊢ ( ( ( R ‘ 𝑌 ) ∩ ( L ‘ 𝑌 ) ) = ∅ → ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) = ( R ‘ 𝑌 ) ) |
67 |
65 66
|
syl |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( R ‘ 𝑌 ) ∖ ( L ‘ 𝑌 ) ) = ( R ‘ 𝑌 ) ) |
68 |
59 67
|
syl5eq |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( ( L ‘ 𝑌 ) ∪ ( R ‘ 𝑌 ) ) ∖ ( L ‘ 𝑌 ) ) = ( R ‘ 𝑌 ) ) |
69 |
40 54 68
|
3eqtr3d |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( R ‘ 𝑋 ) = ( R ‘ 𝑌 ) ) |
70 |
36 69
|
oveq12d |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) ) |
71 |
|
lrcut |
⊢ ( 𝑋 ∈ No → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ) |
72 |
47 71
|
syl |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) |s ( R ‘ 𝑋 ) ) = 𝑋 ) |
73 |
|
lrcut |
⊢ ( 𝑌 ∈ No → ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) = 𝑌 ) |
74 |
61 73
|
syl |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → ( ( L ‘ 𝑌 ) |s ( R ‘ 𝑌 ) ) = 𝑌 ) |
75 |
70 72 74
|
3eqtr3d |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) ∧ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) → 𝑋 = 𝑌 ) |
76 |
35 75
|
mtand |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ¬ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) |
77 |
|
dfpss2 |
⊢ ( ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ↔ ( ( L ‘ 𝑋 ) ⊆ ( L ‘ 𝑌 ) ∧ ¬ ( L ‘ 𝑋 ) = ( L ‘ 𝑌 ) ) ) |
78 |
28 76 77
|
sylanbrc |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ 𝑋 <s 𝑌 ) → ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ) |
79 |
78
|
ex |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( 𝑋 <s 𝑌 → ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ) ) |
80 |
|
dfpss3 |
⊢ ( ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ↔ ( ( L ‘ 𝑋 ) ⊆ ( L ‘ 𝑌 ) ∧ ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ) ) |
81 |
|
ssdif0 |
⊢ ( ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ↔ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) = ∅ ) |
82 |
81
|
necon3bbii |
⊢ ( ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ↔ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) ≠ ∅ ) |
83 |
|
n0 |
⊢ ( ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) ) |
84 |
82 83
|
bitri |
⊢ ( ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ↔ ∃ 𝑥 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) ) |
85 |
|
eldif |
⊢ ( 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) ↔ ( 𝑥 ∈ ( L ‘ 𝑌 ) ∧ ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ) ) |
86 |
22
|
a1i |
⊢ ( 𝑌 ∈ No → ( L ‘ 𝑌 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑥 <s 𝑌 } ) |
87 |
86
|
eleq2d |
⊢ ( 𝑌 ∈ No → ( 𝑥 ∈ ( L ‘ 𝑌 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∣ 𝑥 <s 𝑌 } ) ) |
88 |
87 25
|
bitrdi |
⊢ ( 𝑌 ∈ No → ( 𝑥 ∈ ( L ‘ 𝑌 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ) |
89 |
17
|
a1i |
⊢ ( 𝑋 ∈ No → ( L ‘ 𝑋 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) |
90 |
89
|
eleq2d |
⊢ ( 𝑋 ∈ No → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ 𝑥 ∈ { 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∣ 𝑥 <s 𝑋 } ) ) |
91 |
90 20
|
bitrdi |
⊢ ( 𝑋 ∈ No → ( 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) ) |
92 |
91
|
notbid |
⊢ ( 𝑋 ∈ No → ( ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ¬ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ) ) |
93 |
|
ianor |
⊢ ( ¬ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∧ 𝑥 <s 𝑋 ) ↔ ( ¬ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) ) |
94 |
92 93
|
bitrdi |
⊢ ( 𝑋 ∈ No → ( ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ↔ ( ¬ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) ) ) |
95 |
88 94
|
bi2anan9r |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ) → ( ( 𝑥 ∈ ( L ‘ 𝑌 ) ∧ ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ) ↔ ( ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ∧ ( ¬ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) ) ) ) |
96 |
95
|
3adant3 |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( ( 𝑥 ∈ ( L ‘ 𝑌 ) ∧ ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ) ↔ ( ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ∧ ( ¬ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) ) ) ) |
97 |
|
simprl |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ) |
98 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) |
99 |
98
|
fveq2d |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( O ‘ ( bday ‘ 𝑋 ) ) = ( O ‘ ( bday ‘ 𝑌 ) ) ) |
100 |
97 99
|
eleqtrrd |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ) |
101 |
100
|
pm2.24d |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( ¬ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) → 𝑋 <s 𝑌 ) ) |
102 |
|
simpll1 |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑋 ∈ No ) |
103 |
|
oldssno |
⊢ ( O ‘ ( bday ‘ 𝑌 ) ) ⊆ No |
104 |
103 97
|
sselid |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → 𝑥 ∈ No ) |
105 |
104
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑥 ∈ No ) |
106 |
|
simpll2 |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑌 ∈ No ) |
107 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → 𝑋 ∈ No ) |
108 |
|
slenlt |
⊢ ( ( 𝑋 ∈ No ∧ 𝑥 ∈ No ) → ( 𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋 ) ) |
109 |
107 104 108
|
syl2anc |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( 𝑋 ≤s 𝑥 ↔ ¬ 𝑥 <s 𝑋 ) ) |
110 |
109
|
biimpar |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑋 ≤s 𝑥 ) |
111 |
|
simplrr |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑥 <s 𝑌 ) |
112 |
102 105 106 110 111
|
slelttrd |
⊢ ( ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) ∧ ¬ 𝑥 <s 𝑋 ) → 𝑋 <s 𝑌 ) |
113 |
112
|
ex |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( ¬ 𝑥 <s 𝑋 → 𝑋 <s 𝑌 ) ) |
114 |
101 113
|
jaod |
⊢ ( ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) ∧ ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ) → ( ( ¬ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) → 𝑋 <s 𝑌 ) ) |
115 |
114
|
expimpd |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( ( ( 𝑥 ∈ ( O ‘ ( bday ‘ 𝑌 ) ) ∧ 𝑥 <s 𝑌 ) ∧ ( ¬ 𝑥 ∈ ( O ‘ ( bday ‘ 𝑋 ) ) ∨ ¬ 𝑥 <s 𝑋 ) ) → 𝑋 <s 𝑌 ) ) |
116 |
96 115
|
sylbid |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( ( 𝑥 ∈ ( L ‘ 𝑌 ) ∧ ¬ 𝑥 ∈ ( L ‘ 𝑋 ) ) → 𝑋 <s 𝑌 ) ) |
117 |
85 116
|
syl5bi |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) → 𝑋 <s 𝑌 ) ) |
118 |
117
|
exlimdv |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( ∃ 𝑥 𝑥 ∈ ( ( L ‘ 𝑌 ) ∖ ( L ‘ 𝑋 ) ) → 𝑋 <s 𝑌 ) ) |
119 |
84 118
|
syl5bi |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) → 𝑋 <s 𝑌 ) ) |
120 |
119
|
adantld |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( ( ( L ‘ 𝑋 ) ⊆ ( L ‘ 𝑌 ) ∧ ¬ ( L ‘ 𝑌 ) ⊆ ( L ‘ 𝑋 ) ) → 𝑋 <s 𝑌 ) ) |
121 |
80 120
|
syl5bi |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) → 𝑋 <s 𝑌 ) ) |
122 |
79 121
|
impbid |
⊢ ( ( 𝑋 ∈ No ∧ 𝑌 ∈ No ∧ ( bday ‘ 𝑋 ) = ( bday ‘ 𝑌 ) ) → ( 𝑋 <s 𝑌 ↔ ( L ‘ 𝑋 ) ⊊ ( L ‘ 𝑌 ) ) ) |