Metamath Proof Explorer


Theorem lshpne

Description: A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014)

Ref Expression
Hypotheses lshpne.v V=BaseW
lshpne.h H=LSHypW
lshpne.w φWLMod
lshpne.u φUH
Assertion lshpne φUV

Proof

Step Hyp Ref Expression
1 lshpne.v V=BaseW
2 lshpne.h H=LSHypW
3 lshpne.w φWLMod
4 lshpne.u φUH
5 eqid LSpanW=LSpanW
6 eqid LSubSpW=LSubSpW
7 1 5 6 2 islshp WLModUHULSubSpWUVvVLSpanWUv=V
8 3 7 syl φUHULSubSpWUVvVLSpanWUv=V
9 4 8 mpbid φULSubSpWUVvVLSpanWUv=V
10 9 simp2d φUV