Metamath Proof Explorer


Theorem lsmsnidl

Description: The product of the ring with a single element is a principal ideal. (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses lsmsnpridl.1 B=BaseR
lsmsnpridl.2 G=mulGrpR
lsmsnpridl.3 ×˙=LSSumG
lsmsnpridl.4 K=RSpanR
lsmsnpridl.5 φRRing
lsmsnpridl.6 φXB
Assertion lsmsnidl φB×˙XLPIdealR

Proof

Step Hyp Ref Expression
1 lsmsnpridl.1 B=BaseR
2 lsmsnpridl.2 G=mulGrpR
3 lsmsnpridl.3 ×˙=LSSumG
4 lsmsnpridl.4 K=RSpanR
5 lsmsnpridl.5 φRRing
6 lsmsnpridl.6 φXB
7 sneq y=Xy=X
8 7 fveq2d y=XKy=KX
9 8 eqeq2d y=XB×˙X=KyB×˙X=KX
10 9 adantl φy=XB×˙X=KyB×˙X=KX
11 1 2 3 4 5 6 lsmsnpridl φB×˙X=KX
12 6 10 11 rspcedvd φyBB×˙X=Ky
13 eqid LPIdealR=LPIdealR
14 13 4 1 islpidl RRingB×˙XLPIdealRyBB×˙X=Ky
15 5 14 syl φB×˙XLPIdealRyBB×˙X=Ky
16 12 15 mpbird φB×˙XLPIdealR