Description: The product of the ring with a single element is a principal ideal. (Contributed by Thierry Arnoux, 21-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmsnpridl.1 | |
|
lsmsnpridl.2 | |
||
lsmsnpridl.3 | |
||
lsmsnpridl.4 | |
||
lsmsnpridl.5 | |
||
lsmsnpridl.6 | |
||
Assertion | lsmsnidl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsnpridl.1 | |
|
2 | lsmsnpridl.2 | |
|
3 | lsmsnpridl.3 | |
|
4 | lsmsnpridl.4 | |
|
5 | lsmsnpridl.5 | |
|
6 | lsmsnpridl.6 | |
|
7 | sneq | |
|
8 | 7 | fveq2d | |
9 | 8 | eqeq2d | |
10 | 9 | adantl | |
11 | 1 2 3 4 5 6 | lsmsnpridl | |
12 | 6 10 11 | rspcedvd | |
13 | eqid | |
|
14 | 13 4 1 | islpidl | |
15 | 5 14 | syl | |
16 | 12 15 | mpbird | |