Metamath Proof Explorer


Theorem lsp0

Description: Span of the empty set. (Contributed by Mario Carneiro, 5-Sep-2014)

Ref Expression
Hypotheses lspsn0.z 0˙=0W
lspsn0.n N=LSpanW
Assertion lsp0 WLModN=0˙

Proof

Step Hyp Ref Expression
1 lspsn0.z 0˙=0W
2 lspsn0.n N=LSpanW
3 eqid LSubSpW=LSubSpW
4 1 3 lsssn0 WLMod0˙LSubSpW
5 0ss 0˙
6 3 2 lspssp WLMod0˙LSubSpW0˙N0˙
7 5 6 mp3an3 WLMod0˙LSubSpWN0˙
8 4 7 mpdan WLModN0˙
9 0ss BaseW
10 eqid BaseW=BaseW
11 10 3 2 lspcl WLModBaseWNLSubSpW
12 9 11 mpan2 WLModNLSubSpW
13 1 3 lss0ss WLModNLSubSpW0˙N
14 12 13 mpdan WLMod0˙N
15 8 14 eqssd WLModN=0˙