Metamath Proof Explorer


Theorem lspsneli

Description: A scalar product with a vector belongs to the span of its singleton. ( spansnmul analog.) (Contributed by NM, 2-Jul-2014)

Ref Expression
Hypotheses lspsnvsel.v V=BaseW
lspsnvsel.t ·˙=W
lspsnvsel.f F=ScalarW
lspsnvsel.k K=BaseF
lspsnvsel.n N=LSpanW
lspsnvsel.w φWLMod
lspsnvsel.a φAK
lspsnvsel.x φXV
Assertion lspsneli φA·˙XNX

Proof

Step Hyp Ref Expression
1 lspsnvsel.v V=BaseW
2 lspsnvsel.t ·˙=W
3 lspsnvsel.f F=ScalarW
4 lspsnvsel.k K=BaseF
5 lspsnvsel.n N=LSpanW
6 lspsnvsel.w φWLMod
7 lspsnvsel.a φAK
8 lspsnvsel.x φXV
9 eqid LSubSpW=LSubSpW
10 1 9 5 lspsncl WLModXVNXLSubSpW
11 6 8 10 syl2anc φNXLSubSpW
12 1 5 lspsnid WLModXVXNX
13 6 8 12 syl2anc φXNX
14 3 2 4 9 lssvscl WLModNXLSubSpWAKXNXA·˙XNX
15 6 11 7 13 14 syl22anc φA·˙XNX