Metamath Proof Explorer


Theorem lspsneq0

Description: Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspsneq0.v V=BaseW
lspsneq0.z 0˙=0W
lspsneq0.n N=LSpanW
Assertion lspsneq0 WLModXVNX=0˙X=0˙

Proof

Step Hyp Ref Expression
1 lspsneq0.v V=BaseW
2 lspsneq0.z 0˙=0W
3 lspsneq0.n N=LSpanW
4 1 3 lspsnid WLModXVXNX
5 eleq2 NX=0˙XNXX0˙
6 4 5 syl5ibcom WLModXVNX=0˙X0˙
7 elsni X0˙X=0˙
8 6 7 syl6 WLModXVNX=0˙X=0˙
9 2 3 lspsn0 WLModN0˙=0˙
10 9 adantr WLModXVN0˙=0˙
11 sneq X=0˙X=0˙
12 11 fveqeq2d X=0˙NX=0˙N0˙=0˙
13 10 12 syl5ibrcom WLModXVX=0˙NX=0˙
14 8 13 impbid WLModXVNX=0˙X=0˙