Metamath Proof Explorer


Theorem lspsnss

Description: The span of the singleton of a subspace member is included in the subspace. ( spansnss analog.) (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 4-Sep-2014)

Ref Expression
Hypotheses lspsnss.s S=LSubSpW
lspsnss.n N=LSpanW
Assertion lspsnss WLModUSXUNXU

Proof

Step Hyp Ref Expression
1 lspsnss.s S=LSubSpW
2 lspsnss.n N=LSpanW
3 snssi XUXU
4 1 2 lspssp WLModUSXUNXU
5 3 4 syl3an3 WLModUSXUNXU