Metamath Proof Explorer


Theorem lssel

Description: A subspace member is a vector. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 8-Jan-2015)

Ref Expression
Hypotheses lssss.v V=BaseW
lssss.s S=LSubSpW
Assertion lssel USXUXV

Proof

Step Hyp Ref Expression
1 lssss.v V=BaseW
2 lssss.s S=LSubSpW
3 1 2 lssss USUV
4 3 sselda USXUXV