Description: No subspace is smaller than the zero subspace. ( shle0 analog.) (Contributed by NM, 20-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0cl.z | ||
| lss0cl.s | |||
| Assertion | lssle0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lss0cl.z | ||
| 2 | lss0cl.s | ||
| 3 | 1 2 | lss0ss | |
| 4 | 3 | biantrud | |
| 5 | eqss | ||
| 6 | 4 5 | bitr4di |