Metamath Proof Explorer


Theorem lsslvec

Description: A vector subspace is a vector space. (Contributed by NM, 14-Mar-2015)

Ref Expression
Hypotheses lsslvec.x X = W 𝑠 U
lsslvec.s S = LSubSp W
Assertion lsslvec W LVec U S X LVec

Proof

Step Hyp Ref Expression
1 lsslvec.x X = W 𝑠 U
2 lsslvec.s S = LSubSp W
3 lveclmod W LVec W LMod
4 1 2 lsslmod W LMod U S X LMod
5 3 4 sylan W LVec U S X LMod
6 eqid Scalar W = Scalar W
7 1 6 resssca U S Scalar W = Scalar X
8 7 adantl W LVec U S Scalar W = Scalar X
9 6 lvecdrng W LVec Scalar W DivRing
10 9 adantr W LVec U S Scalar W DivRing
11 8 10 eqeltrrd W LVec U S Scalar X DivRing
12 eqid Scalar X = Scalar X
13 12 islvec X LVec X LMod Scalar X DivRing
14 5 11 13 sylanbrc W LVec U S X LVec