Metamath Proof Explorer


Theorem lswccats1fst

Description: The last symbol of a nonempty word concatenated with its first symbol is the first symbol. (Contributed by AV, 28-Jun-2018) (Proof shortened by AV, 1-May-2020)

Ref Expression
Assertion lswccats1fst PWordV1PlastSP++⟨“P0”⟩=P++⟨“P0”⟩0

Proof

Step Hyp Ref Expression
1 wrdsymb1 PWordV1PP0V
2 lswccats1 PWordVP0VlastSP++⟨“P0”⟩=P0
3 1 2 syldan PWordV1PlastSP++⟨“P0”⟩=P0
4 simpl PWordV1PPWordV
5 1 s1cld PWordV1P⟨“P0”⟩WordV
6 lencl PWordVP0
7 elnnnn0c PP01P
8 7 biimpri P01PP
9 6 8 sylan PWordV1PP
10 lbfzo0 00..^PP
11 9 10 sylibr PWordV1P00..^P
12 ccatval1 PWordV⟨“P0”⟩WordV00..^PP++⟨“P0”⟩0=P0
13 4 5 11 12 syl3anc PWordV1PP++⟨“P0”⟩0=P0
14 3 13 eqtr4d PWordV1PlastSP++⟨“P0”⟩=P++⟨“P0”⟩0