Metamath Proof Explorer


Theorem lt2subd

Description: Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1 φA
ltnegd.2 φB
ltadd1d.3 φC
lt2addd.4 φD
lt2addd.5 φA<C
lt2addd.6 φB<D
Assertion lt2subd φAD<CB

Proof

Step Hyp Ref Expression
1 leidd.1 φA
2 ltnegd.2 φB
3 ltadd1d.3 φC
4 lt2addd.4 φD
5 lt2addd.5 φA<C
6 lt2addd.6 φB<D
7 lt2sub ADCBA<CB<DAD<CB
8 1 4 3 2 7 syl22anc φA<CB<DAD<CB
9 5 6 8 mp2and φAD<CB