Metamath Proof Explorer


Theorem lt2sub

Description: Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Assertion lt2sub ABCDA<CD<BAB<CD

Proof

Step Hyp Ref Expression
1 simpll ABCDA
2 simprl ABCDC
3 simplr ABCDB
4 ltsub1 ACBA<CAB<CB
5 1 2 3 4 syl3anc ABCDA<CAB<CB
6 simprr ABCDD
7 ltsub2 DBCD<BCB<CD
8 6 3 2 7 syl3anc ABCDD<BCB<CD
9 5 8 anbi12d ABCDA<CD<BAB<CBCB<CD
10 resubcl ABAB
11 10 adantr ABCDAB
12 2 3 resubcld ABCDCB
13 resubcl CDCD
14 13 adantl ABCDCD
15 lttr ABCBCDAB<CBCB<CDAB<CD
16 11 12 14 15 syl3anc ABCDAB<CBCB<CDAB<CD
17 9 16 sylbid ABCDA<CD<BAB<CD