| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR )  | 
						
						
							| 4 | 
							
								
							 | 
							ltsub1 | 
							 |-  ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( A < C <-> ( A - B ) < ( C - B ) ) )  | 
						
						
							| 5 | 
							
								1 2 3 4
							 | 
							syl3anc | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A < C <-> ( A - B ) < ( C - B ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR )  | 
						
						
							| 7 | 
							
								
							 | 
							ltsub2 | 
							 |-  ( ( D e. RR /\ B e. RR /\ C e. RR ) -> ( D < B <-> ( C - B ) < ( C - D ) ) )  | 
						
						
							| 8 | 
							
								6 3 2 7
							 | 
							syl3anc | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( D < B <-> ( C - B ) < ( C - D ) ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							anbi12d | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ D < B ) <-> ( ( A - B ) < ( C - B ) /\ ( C - B ) < ( C - D ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							resubcl | 
							 |-  ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A - B ) e. RR )  | 
						
						
							| 12 | 
							
								2 3
							 | 
							resubcld | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C - B ) e. RR )  | 
						
						
							| 13 | 
							
								
							 | 
							resubcl | 
							 |-  ( ( C e. RR /\ D e. RR ) -> ( C - D ) e. RR )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C - D ) e. RR )  | 
						
						
							| 15 | 
							
								
							 | 
							lttr | 
							 |-  ( ( ( A - B ) e. RR /\ ( C - B ) e. RR /\ ( C - D ) e. RR ) -> ( ( ( A - B ) < ( C - B ) /\ ( C - B ) < ( C - D ) ) -> ( A - B ) < ( C - D ) ) )  | 
						
						
							| 16 | 
							
								11 12 14 15
							 | 
							syl3anc | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A - B ) < ( C - B ) /\ ( C - B ) < ( C - D ) ) -> ( A - B ) < ( C - D ) ) )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							sylbid | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ D < B ) -> ( A - B ) < ( C - D ) ) )  |