Metamath Proof Explorer


Theorem possumd

Description: Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017)

Ref Expression
Hypotheses possumd.1 φA
possumd.2 φB
Assertion possumd φ0<A+BB<A

Proof

Step Hyp Ref Expression
1 possumd.1 φA
2 possumd.2 φB
3 2 renegcld φB
4 3 1 posdifd φB<A0<AB
5 1 recnd φA
6 2 recnd φB
7 5 6 subnegd φAB=A+B
8 7 breq2d φ0<AB0<A+B
9 4 8 bitr2d φ0<A+BB<A