Metamath Proof Explorer


Theorem ltmulneg

Description: Multiplying by a negative number, swaps the order. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses ltmulneg.a φA
ltmulneg.b φB
ltmulneg.c φC
ltmulneg.n φC<0
Assertion ltmulneg φA<BBC<AC

Proof

Step Hyp Ref Expression
1 ltmulneg.a φA
2 ltmulneg.b φB
3 ltmulneg.c φC
4 ltmulneg.n φC<0
5 3 4 negelrpd φC+
6 1 2 5 ltmul1d φA<BAC<BC
7 3 renegcld φC
8 1 7 remulcld φAC
9 2 7 remulcld φBC
10 8 9 ltnegd φAC<BCBC<AC
11 2 recnd φB
12 7 recnd φC
13 11 12 mulneg2d φBC=BC
14 3 recnd φC
15 14 negnegd φC=C
16 15 oveq2d φBC=BC
17 13 16 eqtr3d φBC=BC
18 1 recnd φA
19 18 12 mulneg2d φAC=AC
20 15 oveq2d φAC=AC
21 19 20 eqtr3d φAC=AC
22 17 21 breq12d φBC<ACBC<AC
23 6 10 22 3bitrd φA<BBC<AC