Metamath Proof Explorer


Theorem ltnegcon2

Description: Contraposition of negative in 'less than'. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion ltnegcon2 ABA<BB<A

Proof

Step Hyp Ref Expression
1 renegcl BB
2 ltneg ABA<BB<A
3 1 2 sylan2 ABA<BB<A
4 simpr ABB
5 4 recnd ABB
6 5 negnegd ABB=B
7 6 breq1d ABB<AB<A
8 3 7 bitrd ABA<BB<A