Metamath Proof Explorer


Theorem ltrelre

Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltrelre <2

Proof

Step Hyp Ref Expression
1 df-lt <=xy|xyzwx=z0𝑹y=w0𝑹z<𝑹w
2 opabssxp xy|xyzwx=z0𝑹y=w0𝑹z<𝑹w2
3 1 2 eqsstri <2