Metamath Proof Explorer


Theorem ltrmy

Description: The Y-sequence is strictly monotonic over ZZ . (Contributed by Stefan O'Rear, 25-Sep-2014)

Ref Expression
Assertion ltrmy A2MNM<NAYrmM<AYrmN

Proof

Step Hyp Ref Expression
1 ltrmynn0 A2a0b0a<bAYrma<AYrmb
2 1 biimpd A2a0b0a<bAYrma<AYrmb
3 frmy Yrm:2×
4 3 fovcl A2aAYrma
5 4 zred A2aAYrma
6 rmyneg A2bAYrmb=AYrmb
7 oveq2 a=MAYrma=AYrmM
8 oveq2 a=NAYrma=AYrmN
9 oveq2 a=bAYrma=AYrmb
10 oveq2 a=bAYrma=AYrmb
11 2 5 6 7 8 9 10 monotoddzz A2MNM<NAYrmM<AYrmN