Metamath Proof Explorer


Theorem ltrncoelN

Description: Composition of lattice translations of an atom. TODO: See if this can shorten some ltrnel uses. (Contributed by NM, 1-May-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ltrnel.l ˙=K
ltrnel.a A=AtomsK
ltrnel.h H=LHypK
ltrnel.t T=LTrnKW
Assertion ltrncoelN KHLWHFTGTPA¬P˙WFGPA¬FGP˙W

Proof

Step Hyp Ref Expression
1 ltrnel.l ˙=K
2 ltrnel.a A=AtomsK
3 ltrnel.h H=LHypK
4 ltrnel.t T=LTrnKW
5 simp1 KHLWHFTGTPA¬P˙WKHLWH
6 simp2l KHLWHFTGTPA¬P˙WFT
7 1 2 3 4 ltrnel KHLWHGTPA¬P˙WGPA¬GP˙W
8 7 3adant2l KHLWHFTGTPA¬P˙WGPA¬GP˙W
9 1 2 3 4 ltrnel KHLWHFTGPA¬GP˙WFGPA¬FGP˙W
10 5 6 8 9 syl3anc KHLWHFTGTPA¬P˙WFGPA¬FGP˙W