| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltrnnidn.b |  | 
						
							| 2 |  | ltrnnidn.l |  | 
						
							| 3 |  | ltrnnidn.a |  | 
						
							| 4 |  | ltrnnidn.h |  | 
						
							| 5 |  | ltrnnidn.t |  | 
						
							| 6 |  | simp1l |  | 
						
							| 7 |  | hlatl |  | 
						
							| 8 | 6 7 | syl |  | 
						
							| 9 |  | simp1 |  | 
						
							| 10 |  | simp2l |  | 
						
							| 11 |  | simp2r |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 1 3 4 5 12 | trlnidat |  | 
						
							| 14 | 9 10 11 13 | syl3anc |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 15 3 | atn0 |  | 
						
							| 17 | 8 14 16 | syl2anc |  | 
						
							| 18 |  | simpl1 |  | 
						
							| 19 |  | simpl3 |  | 
						
							| 20 |  | simpl2l |  | 
						
							| 21 |  | simpr |  | 
						
							| 22 | 2 15 3 4 5 12 | trl0 |  | 
						
							| 23 | 18 19 20 21 22 | syl112anc |  | 
						
							| 24 | 23 | ex |  | 
						
							| 25 | 24 | necon3d |  | 
						
							| 26 | 17 25 | mpd |  |