Metamath Proof Explorer


Theorem ltrnnidn

Description: If a lattice translation is not the identity, then the translation of any atom not under the fiducial co-atom W is different from the atom. Remark above Lemma C in Crawley p. 112. (Contributed by NM, 24-May-2012)

Ref Expression
Hypotheses ltrnnidn.b B=BaseK
ltrnnidn.l ˙=K
ltrnnidn.a A=AtomsK
ltrnnidn.h H=LHypK
ltrnnidn.t T=LTrnKW
Assertion ltrnnidn KHLWHFTFIBPA¬P˙WFPP

Proof

Step Hyp Ref Expression
1 ltrnnidn.b B=BaseK
2 ltrnnidn.l ˙=K
3 ltrnnidn.a A=AtomsK
4 ltrnnidn.h H=LHypK
5 ltrnnidn.t T=LTrnKW
6 simp1l KHLWHFTFIBPA¬P˙WKHL
7 hlatl KHLKAtLat
8 6 7 syl KHLWHFTFIBPA¬P˙WKAtLat
9 simp1 KHLWHFTFIBPA¬P˙WKHLWH
10 simp2l KHLWHFTFIBPA¬P˙WFT
11 simp2r KHLWHFTFIBPA¬P˙WFIB
12 eqid trLKW=trLKW
13 1 3 4 5 12 trlnidat KHLWHFTFIBtrLKWFA
14 9 10 11 13 syl3anc KHLWHFTFIBPA¬P˙WtrLKWFA
15 eqid 0.K=0.K
16 15 3 atn0 KAtLattrLKWFAtrLKWF0.K
17 8 14 16 syl2anc KHLWHFTFIBPA¬P˙WtrLKWF0.K
18 simpl1 KHLWHFTFIBPA¬P˙WFP=PKHLWH
19 simpl3 KHLWHFTFIBPA¬P˙WFP=PPA¬P˙W
20 simpl2l KHLWHFTFIBPA¬P˙WFP=PFT
21 simpr KHLWHFTFIBPA¬P˙WFP=PFP=P
22 2 15 3 4 5 12 trl0 KHLWHPA¬P˙WFTFP=PtrLKWF=0.K
23 18 19 20 21 22 syl112anc KHLWHFTFIBPA¬P˙WFP=PtrLKWF=0.K
24 23 ex KHLWHFTFIBPA¬P˙WFP=PtrLKWF=0.K
25 24 necon3d KHLWHFTFIBPA¬P˙WtrLKWF0.KFPP
26 17 25 mpd KHLWHFTFIBPA¬P˙WFPP