Metamath Proof Explorer


Theorem lvolex3N

Description: There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lvolex3.l ˙=K
lvolex3.a A=AtomsK
lvolex3.p P=LPlanesK
Assertion lvolex3N KHLXPqA¬q˙X

Proof

Step Hyp Ref Expression
1 lvolex3.l ˙=K
2 lvolex3.a A=AtomsK
3 lvolex3.p P=LPlanesK
4 eqid BaseK=BaseK
5 eqid joinK=joinK
6 4 1 5 2 3 islpln2 KHLXPXBaseKrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKt
7 simp1l KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtKHL
8 simp1rl KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtrA
9 simp1rr KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtsA
10 simp2 KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKttA
11 5 1 2 3dim3 KHLrAsAtAqA¬q˙rjoinKsjoinKt
12 7 8 9 10 11 syl13anc KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtqA¬q˙rjoinKsjoinKt
13 simp33 KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtX=rjoinKsjoinKt
14 breq2 X=rjoinKsjoinKtq˙Xq˙rjoinKsjoinKt
15 14 notbid X=rjoinKsjoinKt¬q˙X¬q˙rjoinKsjoinKt
16 15 rexbidv X=rjoinKsjoinKtqA¬q˙XqA¬q˙rjoinKsjoinKt
17 13 16 syl KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtqA¬q˙XqA¬q˙rjoinKsjoinKt
18 12 17 mpbird KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtqA¬q˙X
19 18 rexlimdv3a KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtqA¬q˙X
20 19 rexlimdvva KHLrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtqA¬q˙X
21 20 adantld KHLXBaseKrAsAtArs¬t˙rjoinKsX=rjoinKsjoinKtqA¬q˙X
22 6 21 sylbid KHLXPqA¬q˙X
23 22 imp KHLXPqA¬q˙X