Metamath Proof Explorer


Theorem lvolex3N

Description: There is an atom outside of a lattice plane i.e. a 3-dimensional lattice volume exists. (Contributed by NM, 28-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lvolex3.l = ( le ‘ 𝐾 )
lvolex3.a 𝐴 = ( Atoms ‘ 𝐾 )
lvolex3.p 𝑃 = ( LPlanes ‘ 𝐾 )
Assertion lvolex3N ( ( 𝐾 ∈ HL ∧ 𝑋𝑃 ) → ∃ 𝑞𝐴 ¬ 𝑞 𝑋 )

Proof

Step Hyp Ref Expression
1 lvolex3.l = ( le ‘ 𝐾 )
2 lvolex3.a 𝐴 = ( Atoms ‘ 𝐾 )
3 lvolex3.p 𝑃 = ( LPlanes ‘ 𝐾 )
4 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
5 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
6 4 1 5 2 3 islpln2 ( 𝐾 ∈ HL → ( 𝑋𝑃 ↔ ( 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑟𝐴𝑠𝐴𝑡𝐴 ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) ) )
7 simp1l ( ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴 ) ) ∧ 𝑡𝐴 ∧ ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝐾 ∈ HL )
8 simp1rl ( ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴 ) ) ∧ 𝑡𝐴 ∧ ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝑟𝐴 )
9 simp1rr ( ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴 ) ) ∧ 𝑡𝐴 ∧ ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝑠𝐴 )
10 simp2 ( ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴 ) ) ∧ 𝑡𝐴 ∧ ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝑡𝐴 )
11 5 1 2 3dim3 ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴𝑡𝐴 ) ) → ∃ 𝑞𝐴 ¬ 𝑞 ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) )
12 7 8 9 10 11 syl13anc ( ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴 ) ) ∧ 𝑡𝐴 ∧ ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → ∃ 𝑞𝐴 ¬ 𝑞 ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) )
13 simp33 ( ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴 ) ) ∧ 𝑡𝐴 ∧ ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) )
14 breq2 ( 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) → ( 𝑞 𝑋𝑞 ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) )
15 14 notbid ( 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) → ( ¬ 𝑞 𝑋 ↔ ¬ 𝑞 ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) )
16 15 rexbidv ( 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) → ( ∃ 𝑞𝐴 ¬ 𝑞 𝑋 ↔ ∃ 𝑞𝐴 ¬ 𝑞 ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) )
17 13 16 syl ( ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴 ) ) ∧ 𝑡𝐴 ∧ ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → ( ∃ 𝑞𝐴 ¬ 𝑞 𝑋 ↔ ∃ 𝑞𝐴 ¬ 𝑞 ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) )
18 12 17 mpbird ( ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴 ) ) ∧ 𝑡𝐴 ∧ ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → ∃ 𝑞𝐴 ¬ 𝑞 𝑋 )
19 18 rexlimdv3a ( ( 𝐾 ∈ HL ∧ ( 𝑟𝐴𝑠𝐴 ) ) → ( ∃ 𝑡𝐴 ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) → ∃ 𝑞𝐴 ¬ 𝑞 𝑋 ) )
20 19 rexlimdvva ( 𝐾 ∈ HL → ( ∃ 𝑟𝐴𝑠𝐴𝑡𝐴 ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) → ∃ 𝑞𝐴 ¬ 𝑞 𝑋 ) )
21 20 adantld ( 𝐾 ∈ HL → ( ( 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ ∃ 𝑟𝐴𝑠𝐴𝑡𝐴 ( 𝑟𝑠 ∧ ¬ 𝑡 ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ∧ 𝑋 = ( ( 𝑟 ( join ‘ 𝐾 ) 𝑠 ) ( join ‘ 𝐾 ) 𝑡 ) ) ) → ∃ 𝑞𝐴 ¬ 𝑞 𝑋 ) )
22 6 21 sylbid ( 𝐾 ∈ HL → ( 𝑋𝑃 → ∃ 𝑞𝐴 ¬ 𝑞 𝑋 ) )
23 22 imp ( ( 𝐾 ∈ HL ∧ 𝑋𝑃 ) → ∃ 𝑞𝐴 ¬ 𝑞 𝑋 )