Metamath Proof Explorer


Theorem lvolnltN

Description: Two lattice volumes cannot satisfy the less than relation. (Contributed by NM, 12-Jul-2012) (New usage is discouraged.)

Ref Expression
Hypotheses lvolnlt.s <˙=<K
lvolnlt.v V=LVolsK
Assertion lvolnltN KHLXVYV¬X<˙Y

Proof

Step Hyp Ref Expression
1 lvolnlt.s <˙=<K
2 lvolnlt.v V=LVolsK
3 1 pltirr KHLXV¬X<˙X
4 3 3adant3 KHLXVYV¬X<˙X
5 breq2 X=YX<˙XX<˙Y
6 5 notbid X=Y¬X<˙X¬X<˙Y
7 4 6 syl5ibcom KHLXVYVX=Y¬X<˙Y
8 eqid K=K
9 8 1 pltle KHLXVYVX<˙YXKY
10 8 2 lvolcmp KHLXVYVXKYX=Y
11 9 10 sylibd KHLXVYVX<˙YX=Y
12 11 necon3ad KHLXVYVXY¬X<˙Y
13 7 12 pm2.61dne KHLXVYV¬X<˙Y