Description: The inverse matrix transformation applied to the zero polynomial matrix results in the zero of the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019) (Revised by AV, 15-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | m2cpminv0.a | |
|
m2cpminv0.i | |
||
m2cpminv0.p | |
||
m2cpminv0.c | |
||
m2cpminv0.0 | |
||
m2cpminv0.z | |
||
Assertion | m2cpminv0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m2cpminv0.a | |
|
2 | m2cpminv0.i | |
|
3 | m2cpminv0.p | |
|
4 | m2cpminv0.c | |
|
5 | m2cpminv0.0 | |
|
6 | m2cpminv0.z | |
|
7 | eqid | |
|
8 | 1 | fveq2i | |
9 | 5 8 | eqtri | |
10 | 4 | fveq2i | |
11 | 6 10 | eqtri | |
12 | 7 3 9 11 | 0mat2pmat | |
13 | 12 | ancoms | |
14 | 13 | eqcomd | |
15 | 14 | fveq2d | |
16 | 1 | matring | |
17 | eqid | |
|
18 | 17 5 | ring0cl | |
19 | 16 18 | syl | |
20 | 2 1 17 7 | m2cpminvid | |
21 | 19 20 | mpd3an3 | |
22 | 15 21 | eqtrd | |