Metamath Proof Explorer


Theorem m2cpminv0

Description: The inverse matrix transformation applied to the zero polynomial matrix results in the zero of the matrices over the base ring of the polynomials. (Contributed by AV, 24-Nov-2019) (Revised by AV, 15-Dec-2019)

Ref Expression
Hypotheses m2cpminv0.a A=NMatR
m2cpminv0.i I=NcPolyMatToMatR
m2cpminv0.p P=Poly1R
m2cpminv0.c C=NMatP
m2cpminv0.0 0˙=0A
m2cpminv0.z Z=0C
Assertion m2cpminv0 NFinRRingIZ=0˙

Proof

Step Hyp Ref Expression
1 m2cpminv0.a A=NMatR
2 m2cpminv0.i I=NcPolyMatToMatR
3 m2cpminv0.p P=Poly1R
4 m2cpminv0.c C=NMatP
5 m2cpminv0.0 0˙=0A
6 m2cpminv0.z Z=0C
7 eqid NmatToPolyMatR=NmatToPolyMatR
8 1 fveq2i 0A=0NMatR
9 5 8 eqtri 0˙=0NMatR
10 4 fveq2i 0C=0NMatP
11 6 10 eqtri Z=0NMatP
12 7 3 9 11 0mat2pmat RRingNFinNmatToPolyMatR0˙=Z
13 12 ancoms NFinRRingNmatToPolyMatR0˙=Z
14 13 eqcomd NFinRRingZ=NmatToPolyMatR0˙
15 14 fveq2d NFinRRingIZ=INmatToPolyMatR0˙
16 1 matring NFinRRingARing
17 eqid BaseA=BaseA
18 17 5 ring0cl ARing0˙BaseA
19 16 18 syl NFinRRing0˙BaseA
20 2 1 17 7 m2cpminvid NFinRRing0˙BaseAINmatToPolyMatR0˙=0˙
21 19 20 mpd3an3 NFinRRingINmatToPolyMatR0˙=0˙
22 15 21 eqtrd NFinRRingIZ=0˙