Metamath Proof Explorer


Theorem mapdh6jN

Description: Lemmma for mapdh6N . Eliminate ( N{ Y } ) = ( N{ Z } ) hypothesis. (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdh.p + ˙ = + U
mapdh.a ˙ = + C
mapdh6i.xn φ ¬ X N Y Z
mapdh6i.y φ Y V 0 ˙
mapdh6i.z φ Z V 0 ˙
Assertion mapdh6jN φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdh.p + ˙ = + U
19 mapdh.a ˙ = + C
20 mapdh6i.xn φ ¬ X N Y Z
21 mapdh6i.y φ Y V 0 ˙
22 mapdh6i.z φ Z V 0 ˙
23 14 adantr φ N Y = N Z K HL W H
24 15 adantr φ N Y = N Z F D
25 16 adantr φ N Y = N Z M N X = J F
26 17 adantr φ N Y = N Z X V 0 ˙
27 20 adantr φ N Y = N Z ¬ X N Y Z
28 21 adantr φ N Y = N Z Y V 0 ˙
29 22 adantr φ N Y = N Z Z V 0 ˙
30 simpr φ N Y = N Z N Y = N Z
31 1 2 3 4 5 6 7 8 9 10 11 12 13 23 24 25 26 18 19 27 28 29 30 mapdh6iN φ N Y = N Z I X F Y + ˙ Z = I X F Y ˙ I X F Z
32 14 adantr φ N Y N Z K HL W H
33 15 adantr φ N Y N Z F D
34 16 adantr φ N Y N Z M N X = J F
35 17 adantr φ N Y N Z X V 0 ˙
36 21 adantr φ N Y N Z Y V 0 ˙
37 22 adantr φ N Y N Z Z V 0 ˙
38 20 adantr φ N Y N Z ¬ X N Y Z
39 simpr φ N Y N Z N Y N Z
40 eqidd φ N Y N Z I X F Y = I X F Y
41 eqidd φ N Y N Z I X F Z = I X F Z
42 1 2 3 4 5 6 7 8 9 10 11 12 13 32 33 34 35 18 19 36 37 38 39 40 41 mapdh6aN φ N Y N Z I X F Y + ˙ Z = I X F Y ˙ I X F Z
43 31 42 pm2.61dane φ I X F Y + ˙ Z = I X F Y ˙ I X F Z