Metamath Proof Explorer


Theorem mapdh6iN

Description: Lemmma for mapdh6N . Eliminate auxiliary vector w . (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdh.p +˙=+U
mapdh.a ˙=+C
mapdh6i.xn φ¬XNYZ
mapdh6i.y φYV0˙
mapdh6i.z φZV0˙
mapdh6i.yz φNY=NZ
Assertion mapdh6iN φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdh.p +˙=+U
19 mapdh.a ˙=+C
20 mapdh6i.xn φ¬XNYZ
21 mapdh6i.y φYV0˙
22 mapdh6i.z φZV0˙
23 mapdh6i.yz φNY=NZ
24 17 eldifad φXV
25 21 eldifad φYV
26 3 5 6 9 14 24 25 dvh3dim φwV¬wNXY
27 14 3ad2ant1 φwV¬wNXYKHLWH
28 15 3ad2ant1 φwV¬wNXYFD
29 16 3ad2ant1 φwV¬wNXYMNX=JF
30 17 3ad2ant1 φwV¬wNXYXV0˙
31 20 3ad2ant1 φwV¬wNXY¬XNYZ
32 23 3ad2ant1 φwV¬wNXYNY=NZ
33 21 3ad2ant1 φwV¬wNXYYV0˙
34 22 3ad2ant1 φwV¬wNXYZV0˙
35 eqid LSubSpU=LSubSpU
36 3 5 14 dvhlmod φULMod
37 36 3ad2ant1 φwV¬wNXYULMod
38 6 35 9 36 24 25 lspprcl φNXYLSubSpU
39 38 3ad2ant1 φwV¬wNXYNXYLSubSpU
40 simp2 φwV¬wNXYwV
41 simp3 φwV¬wNXY¬wNXY
42 8 35 37 39 40 41 lssneln0 φwV¬wNXYwV0˙
43 1 2 3 4 5 6 7 8 9 10 11 12 13 27 28 29 30 18 19 31 32 33 34 42 41 mapdh6hN φwV¬wNXYIXFY+˙Z=IXFY˙IXFZ
44 43 rexlimdv3a φwV¬wNXYIXFY+˙Z=IXFY˙IXFZ
45 26 44 mpd φIXFY+˙Z=IXFY˙IXFZ