Metamath Proof Explorer


Theorem mapdh6iN

Description: Lemmma for mapdh6N . Eliminate auxiliary vector w . (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdh.p + ˙ = + U
mapdh.a ˙ = + C
mapdh6i.xn φ ¬ X N Y Z
mapdh6i.y φ Y V 0 ˙
mapdh6i.z φ Z V 0 ˙
mapdh6i.yz φ N Y = N Z
Assertion mapdh6iN φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdh.p + ˙ = + U
19 mapdh.a ˙ = + C
20 mapdh6i.xn φ ¬ X N Y Z
21 mapdh6i.y φ Y V 0 ˙
22 mapdh6i.z φ Z V 0 ˙
23 mapdh6i.yz φ N Y = N Z
24 17 eldifad φ X V
25 21 eldifad φ Y V
26 3 5 6 9 14 24 25 dvh3dim φ w V ¬ w N X Y
27 14 3ad2ant1 φ w V ¬ w N X Y K HL W H
28 15 3ad2ant1 φ w V ¬ w N X Y F D
29 16 3ad2ant1 φ w V ¬ w N X Y M N X = J F
30 17 3ad2ant1 φ w V ¬ w N X Y X V 0 ˙
31 20 3ad2ant1 φ w V ¬ w N X Y ¬ X N Y Z
32 23 3ad2ant1 φ w V ¬ w N X Y N Y = N Z
33 21 3ad2ant1 φ w V ¬ w N X Y Y V 0 ˙
34 22 3ad2ant1 φ w V ¬ w N X Y Z V 0 ˙
35 eqid LSubSp U = LSubSp U
36 3 5 14 dvhlmod φ U LMod
37 36 3ad2ant1 φ w V ¬ w N X Y U LMod
38 6 35 9 36 24 25 lspprcl φ N X Y LSubSp U
39 38 3ad2ant1 φ w V ¬ w N X Y N X Y LSubSp U
40 simp2 φ w V ¬ w N X Y w V
41 simp3 φ w V ¬ w N X Y ¬ w N X Y
42 8 35 37 39 40 41 lssneln0 φ w V ¬ w N X Y w V 0 ˙
43 1 2 3 4 5 6 7 8 9 10 11 12 13 27 28 29 30 18 19 31 32 33 34 42 41 mapdh6hN φ w V ¬ w N X Y I X F Y + ˙ Z = I X F Y ˙ I X F Z
44 43 rexlimdv3a φ w V ¬ w N X Y I X F Y + ˙ Z = I X F Y ˙ I X F Z
45 26 44 mpd φ I X F Y + ˙ Z = I X F Y ˙ I X F Z