# Metamath Proof Explorer

## Theorem mapdh6iN

Description: Lemmma for mapdh6N . Eliminate auxiliary vector w . (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q 𝑄 = ( 0g𝐶 )
mapdh.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
mapdh.h 𝐻 = ( LHyp ‘ 𝐾 )
mapdh.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
mapdh.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
mapdh.v 𝑉 = ( Base ‘ 𝑈 )
mapdh.s = ( -g𝑈 )
mapdhc.o 0 = ( 0g𝑈 )
mapdh.n 𝑁 = ( LSpan ‘ 𝑈 )
mapdh.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
mapdh.d 𝐷 = ( Base ‘ 𝐶 )
mapdh.r 𝑅 = ( -g𝐶 )
mapdh.j 𝐽 = ( LSpan ‘ 𝐶 )
mapdh.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
mapdhc.f ( 𝜑𝐹𝐷 )
mapdh.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
mapdhcl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh.p + = ( +g𝑈 )
mapdh.a = ( +g𝐶 )
mapdh6i.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
mapdh6i.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh6i.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
mapdh6i.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) )
Assertion mapdh6iN ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )

### Proof

Step Hyp Ref Expression
1 mapdh.q 𝑄 = ( 0g𝐶 )
2 mapdh.i 𝐼 = ( 𝑥 ∈ V ↦ if ( ( 2nd𝑥 ) = 0 , 𝑄 , ( 𝐷 ( ( 𝑀 ‘ ( 𝑁 ‘ { ( 2nd𝑥 ) } ) ) = ( 𝐽 ‘ { } ) ∧ ( 𝑀 ‘ ( 𝑁 ‘ { ( ( 1st ‘ ( 1st𝑥 ) ) ( 2nd𝑥 ) ) } ) ) = ( 𝐽 ‘ { ( ( 2nd ‘ ( 1st𝑥 ) ) 𝑅 ) } ) ) ) ) )
3 mapdh.h 𝐻 = ( LHyp ‘ 𝐾 )
4 mapdh.m 𝑀 = ( ( mapd ‘ 𝐾 ) ‘ 𝑊 )
5 mapdh.u 𝑈 = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 )
6 mapdh.v 𝑉 = ( Base ‘ 𝑈 )
7 mapdh.s = ( -g𝑈 )
8 mapdhc.o 0 = ( 0g𝑈 )
9 mapdh.n 𝑁 = ( LSpan ‘ 𝑈 )
10 mapdh.c 𝐶 = ( ( LCDual ‘ 𝐾 ) ‘ 𝑊 )
11 mapdh.d 𝐷 = ( Base ‘ 𝐶 )
12 mapdh.r 𝑅 = ( -g𝐶 )
13 mapdh.j 𝐽 = ( LSpan ‘ 𝐶 )
14 mapdh.k ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
15 mapdhc.f ( 𝜑𝐹𝐷 )
16 mapdh.mn ( 𝜑 → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
17 mapdhcl.x ( 𝜑𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
18 mapdh.p + = ( +g𝑈 )
19 mapdh.a = ( +g𝐶 )
20 mapdh6i.xn ( 𝜑 → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
21 mapdh6i.y ( 𝜑𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
22 mapdh6i.z ( 𝜑𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
23 mapdh6i.yz ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) )
24 17 eldifad ( 𝜑𝑋𝑉 )
25 21 eldifad ( 𝜑𝑌𝑉 )
26 3 5 6 9 14 24 25 dvh3dim ( 𝜑 → ∃ 𝑤𝑉 ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
27 14 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
28 15 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝐹𝐷 )
29 16 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑀 ‘ ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝐽 ‘ { 𝐹 } ) )
30 17 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑋 ∈ ( 𝑉 ∖ { 0 } ) )
31 20 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ¬ 𝑋 ∈ ( 𝑁 ‘ { 𝑌 , 𝑍 } ) )
32 23 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑌 } ) = ( 𝑁 ‘ { 𝑍 } ) )
33 21 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑌 ∈ ( 𝑉 ∖ { 0 } ) )
34 22 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑍 ∈ ( 𝑉 ∖ { 0 } ) )
35 eqid ( LSubSp ‘ 𝑈 ) = ( LSubSp ‘ 𝑈 )
36 3 5 14 dvhlmod ( 𝜑𝑈 ∈ LMod )
37 36 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑈 ∈ LMod )
38 6 35 9 36 24 25 lspprcl ( 𝜑 → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
39 38 3ad2ant1 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ∈ ( LSubSp ‘ 𝑈 ) )
40 simp2 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑤𝑉 )
41 simp3 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) )
42 8 35 37 39 40 41 lssneln0 ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → 𝑤 ∈ ( 𝑉 ∖ { 0 } ) )
43 1 2 3 4 5 6 7 8 9 10 11 12 13 27 28 29 30 18 19 31 32 33 34 42 41 mapdh6hN ( ( 𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )
44 43 rexlimdv3a ( 𝜑 → ( ∃ 𝑤𝑉 ¬ 𝑤 ∈ ( 𝑁 ‘ { 𝑋 , 𝑌 } ) → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) ) )
45 26 44 mpd ( 𝜑 → ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , ( 𝑌 + 𝑍 ) ⟩ ) = ( ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑌 ⟩ ) ( 𝐼 ‘ ⟨ 𝑋 , 𝐹 , 𝑍 ⟩ ) ) )