Metamath Proof Explorer


Theorem mapdh6hN

Description: Lemmma for mapdh6N . Part (6) of Baer p. 48 line 2. (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q=0C
mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
mapdh.h H=LHypK
mapdh.m M=mapdKW
mapdh.u U=DVecHKW
mapdh.v V=BaseU
mapdh.s -˙=-U
mapdhc.o 0˙=0U
mapdh.n N=LSpanU
mapdh.c C=LCDualKW
mapdh.d D=BaseC
mapdh.r R=-C
mapdh.j J=LSpanC
mapdh.k φKHLWH
mapdhc.f φFD
mapdh.mn φMNX=JF
mapdhcl.x φXV0˙
mapdh.p +˙=+U
mapdh.a ˙=+C
mapdh6d.xn φ¬XNYZ
mapdh6d.yz φNY=NZ
mapdh6d.y φYV0˙
mapdh6d.z φZV0˙
mapdh6d.w φwV0˙
mapdh6d.wn φ¬wNXY
Assertion mapdh6hN φIXFY+˙Z=IXFY˙IXFZ

Proof

Step Hyp Ref Expression
1 mapdh.q Q=0C
2 mapdh.i I=xVif2ndx=0˙QιhD|MN2ndx=JhMN1st1stx-˙2ndx=J2nd1stxRh
3 mapdh.h H=LHypK
4 mapdh.m M=mapdKW
5 mapdh.u U=DVecHKW
6 mapdh.v V=BaseU
7 mapdh.s -˙=-U
8 mapdhc.o 0˙=0U
9 mapdh.n N=LSpanU
10 mapdh.c C=LCDualKW
11 mapdh.d D=BaseC
12 mapdh.r R=-C
13 mapdh.j J=LSpanC
14 mapdh.k φKHLWH
15 mapdhc.f φFD
16 mapdh.mn φMNX=JF
17 mapdhcl.x φXV0˙
18 mapdh.p +˙=+U
19 mapdh.a ˙=+C
20 mapdh6d.xn φ¬XNYZ
21 mapdh6d.yz φNY=NZ
22 mapdh6d.y φYV0˙
23 mapdh6d.z φZV0˙
24 mapdh6d.w φwV0˙
25 mapdh6d.wn φ¬wNXY
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6gN φIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZ
27 3 10 14 lcdlmod φCLMod
28 24 eldifad φwV
29 3 5 14 dvhlvec φULVec
30 17 eldifad φXV
31 22 eldifad φYV
32 6 9 29 28 30 31 25 lspindpi φNwNXNwNY
33 32 simpld φNwNX
34 33 necomd φNXNw
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 28 34 mapdhcl φIXFwD
36 23 eldifad φZV
37 6 9 29 30 31 36 20 lspindpi φNXNYNXNZ
38 37 simpld φNXNY
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31 38 mapdhcl φIXFYD
40 37 simprd φNXNZ
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 36 40 mapdhcl φIXFZD
42 11 19 lmodass CLModIXFwDIXFYDIXFZDIXFw˙IXFY˙IXFZ=IXFw˙IXFY˙IXFZ
43 27 35 39 41 42 syl13anc φIXFw˙IXFY˙IXFZ=IXFw˙IXFY˙IXFZ
44 26 43 eqtrd φIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZ
45 3 5 14 dvhlmod φULMod
46 6 18 lmodvacl ULModYVZVY+˙ZV
47 45 31 36 46 syl3anc φY+˙ZV
48 6 18 8 9 29 17 22 23 24 21 38 25 mapdindp1 φNXNY+˙Z
49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 47 48 mapdhcl φIXFY+˙ZD
50 11 19 lmodvacl CLModIXFYDIXFZDIXFY˙IXFZD
51 27 39 41 50 syl3anc φIXFY˙IXFZD
52 11 19 lmodlcan CLModIXFY+˙ZDIXFY˙IXFZDIXFwDIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZIXFY+˙Z=IXFY˙IXFZ
53 27 49 51 35 52 syl13anc φIXFw˙IXFY+˙Z=IXFw˙IXFY˙IXFZIXFY+˙Z=IXFY˙IXFZ
54 44 53 mpbid φIXFY+˙Z=IXFY˙IXFZ