Metamath Proof Explorer


Theorem mapdh6hN

Description: Lemmma for mapdh6N . Part (6) of Baer p. 48 line 2. (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q Q = 0 C
mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh.h H = LHyp K
mapdh.m M = mapd K W
mapdh.u U = DVecH K W
mapdh.v V = Base U
mapdh.s - ˙ = - U
mapdhc.o 0 ˙ = 0 U
mapdh.n N = LSpan U
mapdh.c C = LCDual K W
mapdh.d D = Base C
mapdh.r R = - C
mapdh.j J = LSpan C
mapdh.k φ K HL W H
mapdhc.f φ F D
mapdh.mn φ M N X = J F
mapdhcl.x φ X V 0 ˙
mapdh.p + ˙ = + U
mapdh.a ˙ = + C
mapdh6d.xn φ ¬ X N Y Z
mapdh6d.yz φ N Y = N Z
mapdh6d.y φ Y V 0 ˙
mapdh6d.z φ Z V 0 ˙
mapdh6d.w φ w V 0 ˙
mapdh6d.wn φ ¬ w N X Y
Assertion mapdh6hN φ I X F Y + ˙ Z = I X F Y ˙ I X F Z

Proof

Step Hyp Ref Expression
1 mapdh.q Q = 0 C
2 mapdh.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
3 mapdh.h H = LHyp K
4 mapdh.m M = mapd K W
5 mapdh.u U = DVecH K W
6 mapdh.v V = Base U
7 mapdh.s - ˙ = - U
8 mapdhc.o 0 ˙ = 0 U
9 mapdh.n N = LSpan U
10 mapdh.c C = LCDual K W
11 mapdh.d D = Base C
12 mapdh.r R = - C
13 mapdh.j J = LSpan C
14 mapdh.k φ K HL W H
15 mapdhc.f φ F D
16 mapdh.mn φ M N X = J F
17 mapdhcl.x φ X V 0 ˙
18 mapdh.p + ˙ = + U
19 mapdh.a ˙ = + C
20 mapdh6d.xn φ ¬ X N Y Z
21 mapdh6d.yz φ N Y = N Z
22 mapdh6d.y φ Y V 0 ˙
23 mapdh6d.z φ Z V 0 ˙
24 mapdh6d.w φ w V 0 ˙
25 mapdh6d.wn φ ¬ w N X Y
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6gN φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z
27 3 10 14 lcdlmod φ C LMod
28 24 eldifad φ w V
29 3 5 14 dvhlvec φ U LVec
30 17 eldifad φ X V
31 22 eldifad φ Y V
32 6 9 29 28 30 31 25 lspindpi φ N w N X N w N Y
33 32 simpld φ N w N X
34 33 necomd φ N X N w
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 28 34 mapdhcl φ I X F w D
36 23 eldifad φ Z V
37 6 9 29 30 31 36 20 lspindpi φ N X N Y N X N Z
38 37 simpld φ N X N Y
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31 38 mapdhcl φ I X F Y D
40 37 simprd φ N X N Z
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 36 40 mapdhcl φ I X F Z D
42 11 19 lmodass C LMod I X F w D I X F Y D I X F Z D I X F w ˙ I X F Y ˙ I X F Z = I X F w ˙ I X F Y ˙ I X F Z
43 27 35 39 41 42 syl13anc φ I X F w ˙ I X F Y ˙ I X F Z = I X F w ˙ I X F Y ˙ I X F Z
44 26 43 eqtrd φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z
45 3 5 14 dvhlmod φ U LMod
46 6 18 lmodvacl U LMod Y V Z V Y + ˙ Z V
47 45 31 36 46 syl3anc φ Y + ˙ Z V
48 6 18 8 9 29 17 22 23 24 21 38 25 mapdindp1 φ N X N Y + ˙ Z
49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 47 48 mapdhcl φ I X F Y + ˙ Z D
50 11 19 lmodvacl C LMod I X F Y D I X F Z D I X F Y ˙ I X F Z D
51 27 39 41 50 syl3anc φ I X F Y ˙ I X F Z D
52 11 19 lmodlcan C LMod I X F Y + ˙ Z D I X F Y ˙ I X F Z D I X F w D I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z I X F Y + ˙ Z = I X F Y ˙ I X F Z
53 27 49 51 35 52 syl13anc φ I X F w ˙ I X F Y + ˙ Z = I X F w ˙ I X F Y ˙ I X F Z I X F Y + ˙ Z = I X F Y ˙ I X F Z
54 44 53 mpbid φ I X F Y + ˙ Z = I X F Y ˙ I X F Z