Metamath Proof Explorer


Theorem mapdh6hN

Description: Lemmma for mapdh6N . Part (6) of Baer p. 48 line 2. (Contributed by NM, 1-May-2015) (New usage is discouraged.)

Ref Expression
Hypotheses mapdh.q
|- Q = ( 0g ` C )
mapdh.i
|- I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
mapdh.h
|- H = ( LHyp ` K )
mapdh.m
|- M = ( ( mapd ` K ) ` W )
mapdh.u
|- U = ( ( DVecH ` K ) ` W )
mapdh.v
|- V = ( Base ` U )
mapdh.s
|- .- = ( -g ` U )
mapdhc.o
|- .0. = ( 0g ` U )
mapdh.n
|- N = ( LSpan ` U )
mapdh.c
|- C = ( ( LCDual ` K ) ` W )
mapdh.d
|- D = ( Base ` C )
mapdh.r
|- R = ( -g ` C )
mapdh.j
|- J = ( LSpan ` C )
mapdh.k
|- ( ph -> ( K e. HL /\ W e. H ) )
mapdhc.f
|- ( ph -> F e. D )
mapdh.mn
|- ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
mapdhcl.x
|- ( ph -> X e. ( V \ { .0. } ) )
mapdh.p
|- .+ = ( +g ` U )
mapdh.a
|- .+b = ( +g ` C )
mapdh6d.xn
|- ( ph -> -. X e. ( N ` { Y , Z } ) )
mapdh6d.yz
|- ( ph -> ( N ` { Y } ) = ( N ` { Z } ) )
mapdh6d.y
|- ( ph -> Y e. ( V \ { .0. } ) )
mapdh6d.z
|- ( ph -> Z e. ( V \ { .0. } ) )
mapdh6d.w
|- ( ph -> w e. ( V \ { .0. } ) )
mapdh6d.wn
|- ( ph -> -. w e. ( N ` { X , Y } ) )
Assertion mapdh6hN
|- ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) )

Proof

Step Hyp Ref Expression
1 mapdh.q
 |-  Q = ( 0g ` C )
2 mapdh.i
 |-  I = ( x e. _V |-> if ( ( 2nd ` x ) = .0. , Q , ( iota_ h e. D ( ( M ` ( N ` { ( 2nd ` x ) } ) ) = ( J ` { h } ) /\ ( M ` ( N ` { ( ( 1st ` ( 1st ` x ) ) .- ( 2nd ` x ) ) } ) ) = ( J ` { ( ( 2nd ` ( 1st ` x ) ) R h ) } ) ) ) ) )
3 mapdh.h
 |-  H = ( LHyp ` K )
4 mapdh.m
 |-  M = ( ( mapd ` K ) ` W )
5 mapdh.u
 |-  U = ( ( DVecH ` K ) ` W )
6 mapdh.v
 |-  V = ( Base ` U )
7 mapdh.s
 |-  .- = ( -g ` U )
8 mapdhc.o
 |-  .0. = ( 0g ` U )
9 mapdh.n
 |-  N = ( LSpan ` U )
10 mapdh.c
 |-  C = ( ( LCDual ` K ) ` W )
11 mapdh.d
 |-  D = ( Base ` C )
12 mapdh.r
 |-  R = ( -g ` C )
13 mapdh.j
 |-  J = ( LSpan ` C )
14 mapdh.k
 |-  ( ph -> ( K e. HL /\ W e. H ) )
15 mapdhc.f
 |-  ( ph -> F e. D )
16 mapdh.mn
 |-  ( ph -> ( M ` ( N ` { X } ) ) = ( J ` { F } ) )
17 mapdhcl.x
 |-  ( ph -> X e. ( V \ { .0. } ) )
18 mapdh.p
 |-  .+ = ( +g ` U )
19 mapdh.a
 |-  .+b = ( +g ` C )
20 mapdh6d.xn
 |-  ( ph -> -. X e. ( N ` { Y , Z } ) )
21 mapdh6d.yz
 |-  ( ph -> ( N ` { Y } ) = ( N ` { Z } ) )
22 mapdh6d.y
 |-  ( ph -> Y e. ( V \ { .0. } ) )
23 mapdh6d.z
 |-  ( ph -> Z e. ( V \ { .0. } ) )
24 mapdh6d.w
 |-  ( ph -> w e. ( V \ { .0. } ) )
25 mapdh6d.wn
 |-  ( ph -> -. w e. ( N ` { X , Y } ) )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 mapdh6gN
 |-  ( ph -> ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) = ( ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , Y >. ) ) .+b ( I ` <. X , F , Z >. ) ) )
27 3 10 14 lcdlmod
 |-  ( ph -> C e. LMod )
28 24 eldifad
 |-  ( ph -> w e. V )
29 3 5 14 dvhlvec
 |-  ( ph -> U e. LVec )
30 17 eldifad
 |-  ( ph -> X e. V )
31 22 eldifad
 |-  ( ph -> Y e. V )
32 6 9 29 28 30 31 25 lspindpi
 |-  ( ph -> ( ( N ` { w } ) =/= ( N ` { X } ) /\ ( N ` { w } ) =/= ( N ` { Y } ) ) )
33 32 simpld
 |-  ( ph -> ( N ` { w } ) =/= ( N ` { X } ) )
34 33 necomd
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { w } ) )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 28 34 mapdhcl
 |-  ( ph -> ( I ` <. X , F , w >. ) e. D )
36 23 eldifad
 |-  ( ph -> Z e. V )
37 6 9 29 30 31 36 20 lspindpi
 |-  ( ph -> ( ( N ` { X } ) =/= ( N ` { Y } ) /\ ( N ` { X } ) =/= ( N ` { Z } ) ) )
38 37 simpld
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Y } ) )
39 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 31 38 mapdhcl
 |-  ( ph -> ( I ` <. X , F , Y >. ) e. D )
40 37 simprd
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { Z } ) )
41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 36 40 mapdhcl
 |-  ( ph -> ( I ` <. X , F , Z >. ) e. D )
42 11 19 lmodass
 |-  ( ( C e. LMod /\ ( ( I ` <. X , F , w >. ) e. D /\ ( I ` <. X , F , Y >. ) e. D /\ ( I ` <. X , F , Z >. ) e. D ) ) -> ( ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , Y >. ) ) .+b ( I ` <. X , F , Z >. ) ) = ( ( I ` <. X , F , w >. ) .+b ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) )
43 27 35 39 41 42 syl13anc
 |-  ( ph -> ( ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , Y >. ) ) .+b ( I ` <. X , F , Z >. ) ) = ( ( I ` <. X , F , w >. ) .+b ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) )
44 26 43 eqtrd
 |-  ( ph -> ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) = ( ( I ` <. X , F , w >. ) .+b ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) )
45 3 5 14 dvhlmod
 |-  ( ph -> U e. LMod )
46 6 18 lmodvacl
 |-  ( ( U e. LMod /\ Y e. V /\ Z e. V ) -> ( Y .+ Z ) e. V )
47 45 31 36 46 syl3anc
 |-  ( ph -> ( Y .+ Z ) e. V )
48 6 18 8 9 29 17 22 23 24 21 38 25 mapdindp1
 |-  ( ph -> ( N ` { X } ) =/= ( N ` { ( Y .+ Z ) } ) )
49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 47 48 mapdhcl
 |-  ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) e. D )
50 11 19 lmodvacl
 |-  ( ( C e. LMod /\ ( I ` <. X , F , Y >. ) e. D /\ ( I ` <. X , F , Z >. ) e. D ) -> ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) e. D )
51 27 39 41 50 syl3anc
 |-  ( ph -> ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) e. D )
52 11 19 lmodlcan
 |-  ( ( C e. LMod /\ ( ( I ` <. X , F , ( Y .+ Z ) >. ) e. D /\ ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) e. D /\ ( I ` <. X , F , w >. ) e. D ) ) -> ( ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) = ( ( I ` <. X , F , w >. ) .+b ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) <-> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) )
53 27 49 51 35 52 syl13anc
 |-  ( ph -> ( ( ( I ` <. X , F , w >. ) .+b ( I ` <. X , F , ( Y .+ Z ) >. ) ) = ( ( I ` <. X , F , w >. ) .+b ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) <-> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) ) )
54 44 53 mpbid
 |-  ( ph -> ( I ` <. X , F , ( Y .+ Z ) >. ) = ( ( I ` <. X , F , Y >. ) .+b ( I ` <. X , F , Z >. ) ) )