Metamath Proof Explorer


Theorem mapdh8a

Description: Part of Part (8) in Baer p. 48. (Contributed by NM, 5-May-2015)

Ref Expression
Hypotheses mapdh8a.h H = LHyp K
mapdh8a.u U = DVecH K W
mapdh8a.v V = Base U
mapdh8a.s - ˙ = - U
mapdh8a.o 0 ˙ = 0 U
mapdh8a.n N = LSpan U
mapdh8a.c C = LCDual K W
mapdh8a.d D = Base C
mapdh8a.r R = - C
mapdh8a.q Q = 0 C
mapdh8a.j J = LSpan C
mapdh8a.m M = mapd K W
mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
mapdh8a.k φ K HL W H
mapdh8a.f φ F D
mapdh8a.mn φ M N X = J F
mapdh8a.a φ I X F Y = G
mapdh8a.x φ X V 0 ˙
mapdh8a.y φ Y V 0 ˙
mapdh8a.yz φ N Y N T
mapdh8a.xt φ T V 0 ˙
mapdh8a.xn φ ¬ X N Y T
Assertion mapdh8a φ I Y G T = I X F T

Proof

Step Hyp Ref Expression
1 mapdh8a.h H = LHyp K
2 mapdh8a.u U = DVecH K W
3 mapdh8a.v V = Base U
4 mapdh8a.s - ˙ = - U
5 mapdh8a.o 0 ˙ = 0 U
6 mapdh8a.n N = LSpan U
7 mapdh8a.c C = LCDual K W
8 mapdh8a.d D = Base C
9 mapdh8a.r R = - C
10 mapdh8a.q Q = 0 C
11 mapdh8a.j J = LSpan C
12 mapdh8a.m M = mapd K W
13 mapdh8a.i I = x V if 2 nd x = 0 ˙ Q ι h D | M N 2 nd x = J h M N 1 st 1 st x - ˙ 2 nd x = J 2 nd 1 st x R h
14 mapdh8a.k φ K HL W H
15 mapdh8a.f φ F D
16 mapdh8a.mn φ M N X = J F
17 mapdh8a.a φ I X F Y = G
18 mapdh8a.x φ X V 0 ˙
19 mapdh8a.y φ Y V 0 ˙
20 mapdh8a.yz φ N Y N T
21 mapdh8a.xt φ T V 0 ˙
22 mapdh8a.xn φ ¬ X N Y T
23 eqidd φ I X F T = I X F T
24 10 13 1 12 2 3 4 5 6 7 8 9 11 14 15 16 18 19 21 22 20 17 23 mapdheq4 φ I Y G T = I X F T