Metamath Proof Explorer


Theorem mapdjuen

Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of Enderton p. 142. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion mapdjuen A V B W C X A B ⊔︀ C A B × A C

Proof

Step Hyp Ref Expression
1 df-dju B ⊔︀ C = × B 1 𝑜 × C
2 1 oveq2i A B ⊔︀ C = A × B 1 𝑜 × C
3 snex V
4 simp2 A V B W C X B W
5 xpexg V B W × B V
6 3 4 5 sylancr A V B W C X × B V
7 snex 1 𝑜 V
8 simp3 A V B W C X C X
9 xpexg 1 𝑜 V C X 1 𝑜 × C V
10 7 8 9 sylancr A V B W C X 1 𝑜 × C V
11 simp1 A V B W C X A V
12 xp01disjl × B 1 𝑜 × C =
13 12 a1i A V B W C X × B 1 𝑜 × C =
14 mapunen × B V 1 𝑜 × C V A V × B 1 𝑜 × C = A × B 1 𝑜 × C A × B × A 1 𝑜 × C
15 6 10 11 13 14 syl31anc A V B W C X A × B 1 𝑜 × C A × B × A 1 𝑜 × C
16 2 15 eqbrtrid A V B W C X A B ⊔︀ C A × B × A 1 𝑜 × C
17 enrefg A V A A
18 11 17 syl A V B W C X A A
19 0ex V
20 xpsnen2g V B W × B B
21 19 4 20 sylancr A V B W C X × B B
22 mapen A A × B B A × B A B
23 18 21 22 syl2anc A V B W C X A × B A B
24 1on 1 𝑜 On
25 xpsnen2g 1 𝑜 On C X 1 𝑜 × C C
26 24 8 25 sylancr A V B W C X 1 𝑜 × C C
27 mapen A A 1 𝑜 × C C A 1 𝑜 × C A C
28 18 26 27 syl2anc A V B W C X A 1 𝑜 × C A C
29 xpen A × B A B A 1 𝑜 × C A C A × B × A 1 𝑜 × C A B × A C
30 23 28 29 syl2anc A V B W C X A × B × A 1 𝑜 × C A B × A C
31 entr A B ⊔︀ C A × B × A 1 𝑜 × C A × B × A 1 𝑜 × C A B × A C A B ⊔︀ C A B × A C
32 16 30 31 syl2anc A V B W C X A B ⊔︀ C A B × A C