Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of involution and inner product from a Hilbert lattice
mapdordlem1bN
Next ⟩
mapdordlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
mapdordlem1bN
Description:
Lemma for
mapdord
.
(Contributed by
NM
, 27-Jan-2015)
(New usage is discouraged.)
Ref
Expression
Hypothesis
mapdordlem1b.c
⊢
C
=
g
∈
F
|
O
⁡
O
⁡
L
⁡
g
=
L
⁡
g
Assertion
mapdordlem1bN
⊢
J
∈
C
↔
J
∈
F
∧
O
⁡
O
⁡
L
⁡
J
=
L
⁡
J
Proof
Step
Hyp
Ref
Expression
1
mapdordlem1b.c
⊢
C
=
g
∈
F
|
O
⁡
O
⁡
L
⁡
g
=
L
⁡
g
2
1
lcfl1lem
⊢
J
∈
C
↔
J
∈
F
∧
O
⁡
O
⁡
L
⁡
J
=
L
⁡
J