Metamath Proof Explorer


Theorem mapdpglem11

Description: Lemma for mapdpg . (Contributed by NM, 20-Mar-2015)

Ref Expression
Hypotheses mapdpglem.h H=LHypK
mapdpglem.m M=mapdKW
mapdpglem.u U=DVecHKW
mapdpglem.v V=BaseU
mapdpglem.s -˙=-U
mapdpglem.n N=LSpanU
mapdpglem.c C=LCDualKW
mapdpglem.k φKHLWH
mapdpglem.x φXV
mapdpglem.y φYV
mapdpglem1.p ˙=LSSumC
mapdpglem2.j J=LSpanC
mapdpglem3.f F=BaseC
mapdpglem3.te φtMNX˙MNY
mapdpglem3.a A=ScalarU
mapdpglem3.b B=BaseA
mapdpglem3.t ·˙=C
mapdpglem3.r R=-C
mapdpglem3.g φGF
mapdpglem3.e φMNX=JG
mapdpglem4.q Q=0U
mapdpglem.ne φNXNY
mapdpglem4.jt φMNX-˙Y=Jt
mapdpglem4.z 0˙=0A
mapdpglem4.g4 φgB
mapdpglem4.z4 φzMNY
mapdpglem4.t4 φt=g·˙GRz
mapdpglem4.xn φXQ
Assertion mapdpglem11 φg0˙

Proof

Step Hyp Ref Expression
1 mapdpglem.h H=LHypK
2 mapdpglem.m M=mapdKW
3 mapdpglem.u U=DVecHKW
4 mapdpglem.v V=BaseU
5 mapdpglem.s -˙=-U
6 mapdpglem.n N=LSpanU
7 mapdpglem.c C=LCDualKW
8 mapdpglem.k φKHLWH
9 mapdpglem.x φXV
10 mapdpglem.y φYV
11 mapdpglem1.p ˙=LSSumC
12 mapdpglem2.j J=LSpanC
13 mapdpglem3.f F=BaseC
14 mapdpglem3.te φtMNX˙MNY
15 mapdpglem3.a A=ScalarU
16 mapdpglem3.b B=BaseA
17 mapdpglem3.t ·˙=C
18 mapdpglem3.r R=-C
19 mapdpglem3.g φGF
20 mapdpglem3.e φMNX=JG
21 mapdpglem4.q Q=0U
22 mapdpglem.ne φNXNY
23 mapdpglem4.jt φMNX-˙Y=Jt
24 mapdpglem4.z 0˙=0A
25 mapdpglem4.g4 φgB
26 mapdpglem4.z4 φzMNY
27 mapdpglem4.t4 φt=g·˙GRz
28 mapdpglem4.xn φXQ
29 8 adantr φg=0˙KHLWH
30 9 adantr φg=0˙XV
31 10 adantr φg=0˙YV
32 14 adantr φg=0˙tMNX˙MNY
33 19 adantr φg=0˙GF
34 20 adantr φg=0˙MNX=JG
35 22 adantr φg=0˙NXNY
36 23 adantr φg=0˙MNX-˙Y=Jt
37 25 adantr φg=0˙gB
38 26 adantr φg=0˙zMNY
39 27 adantr φg=0˙t=g·˙GRz
40 28 adantr φg=0˙XQ
41 simpr φg=0˙g=0˙
42 1 2 3 4 5 6 7 29 30 31 11 12 13 32 15 16 17 18 33 34 21 35 36 24 37 38 39 40 41 mapdpglem10 φg=0˙NX=NY
43 42 ex φg=0˙NX=NY
44 43 necon3d φNXNYg0˙
45 22 44 mpd φg0˙