Metamath Proof Explorer


Theorem mavmulval

Description: Multiplication of a vector with a square matrix. (Contributed by AV, 23-Feb-2019)

Ref Expression
Hypotheses mavmulval.a A=NMatR
mavmulval.m ×˙=RmaVecMulNN
mavmulval.b B=BaseR
mavmulval.t ·˙=R
mavmulval.r φRV
mavmulval.n φNFin
mavmulval.x φXBaseA
mavmulval.y φYBN
Assertion mavmulval φX×˙Y=iNRjNiXj·˙Yj

Proof

Step Hyp Ref Expression
1 mavmulval.a A=NMatR
2 mavmulval.m ×˙=RmaVecMulNN
3 mavmulval.b B=BaseR
4 mavmulval.t ·˙=R
5 mavmulval.r φRV
6 mavmulval.n φNFin
7 mavmulval.x φXBaseA
8 mavmulval.y φYBN
9 1 3 matbas2 NFinRVBN×N=BaseA
10 6 5 9 syl2anc φBN×N=BaseA
11 7 10 eleqtrrd φXBN×N
12 2 3 4 5 6 6 11 8 mvmulval φX×˙Y=iNRjNiXj·˙Yj