Metamath Proof Explorer


Theorem mavmulfv

Description: A cell/element in the vector resulting from a multiplication of a vector with a square matrix. (Contributed by AV, 6-Dec-2018) (Revised by AV, 18-Feb-2019) (Revised by AV, 23-Feb-2019)

Ref Expression
Hypotheses mavmulval.a A=NMatR
mavmulval.m ×˙=RmaVecMulNN
mavmulval.b B=BaseR
mavmulval.t ·˙=R
mavmulval.r φRV
mavmulval.n φNFin
mavmulval.x φXBaseA
mavmulval.y φYBN
mavmulfv.i φIN
Assertion mavmulfv φX×˙YI=RjNIXj·˙Yj

Proof

Step Hyp Ref Expression
1 mavmulval.a A=NMatR
2 mavmulval.m ×˙=RmaVecMulNN
3 mavmulval.b B=BaseR
4 mavmulval.t ·˙=R
5 mavmulval.r φRV
6 mavmulval.n φNFin
7 mavmulval.x φXBaseA
8 mavmulval.y φYBN
9 mavmulfv.i φIN
10 1 2 3 4 5 6 7 8 mavmulval φX×˙Y=iNRjNiXj·˙Yj
11 oveq1 i=IiXj=IXj
12 11 adantl φi=IiXj=IXj
13 12 oveq1d φi=IiXj·˙Yj=IXj·˙Yj
14 13 mpteq2dv φi=IjNiXj·˙Yj=jNIXj·˙Yj
15 14 oveq2d φi=IRjNiXj·˙Yj=RjNIXj·˙Yj
16 ovexd φRjNIXj·˙YjV
17 10 15 9 16 fvmptd φX×˙YI=RjNIXj·˙Yj