Metamath Proof Explorer


Theorem maxidln1

Description: One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011)

Ref Expression
Hypotheses maxidln1.1 H=2ndR
maxidln1.2 U=GIdH
Assertion maxidln1 RRingOpsMMaxIdlR¬UM

Proof

Step Hyp Ref Expression
1 maxidln1.1 H=2ndR
2 maxidln1.2 U=GIdH
3 eqid 1stR=1stR
4 eqid ran1stR=ran1stR
5 3 4 maxidlnr RRingOpsMMaxIdlRMran1stR
6 maxidlidl RRingOpsMMaxIdlRMIdlR
7 3 1 4 2 1idl RRingOpsMIdlRUMM=ran1stR
8 7 necon3bbid RRingOpsMIdlR¬UMMran1stR
9 6 8 syldan RRingOpsMMaxIdlR¬UMMran1stR
10 5 9 mpbird RRingOpsMMaxIdlR¬UM