Metamath Proof Explorer


Theorem maxidlnr

Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses maxidlnr.1 G=1stR
maxidlnr.2 X=ranG
Assertion maxidlnr RRingOpsMMaxIdlRMX

Proof

Step Hyp Ref Expression
1 maxidlnr.1 G=1stR
2 maxidlnr.2 X=ranG
3 1 2 ismaxidl RRingOpsMMaxIdlRMIdlRMXjIdlRMjj=Mj=X
4 3 biimpa RRingOpsMMaxIdlRMIdlRMXjIdlRMjj=Mj=X
5 4 simp2d RRingOpsMMaxIdlRMX