Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Jeff Madsen
Ideals
maxidlnr
Next ⟩
maxidlmax
Metamath Proof Explorer
Ascii
Unicode
Theorem
maxidlnr
Description:
A maximal ideal is proper.
(Contributed by
Jeff Madsen
, 16-Jun-2011)
Ref
Expression
Hypotheses
maxidlnr.1
⊢
G
=
1
st
⁡
R
maxidlnr.2
⊢
X
=
ran
⁡
G
Assertion
maxidlnr
⊢
R
∈
RingOps
∧
M
∈
MaxIdl
⁡
R
→
M
≠
X
Proof
Step
Hyp
Ref
Expression
1
maxidlnr.1
⊢
G
=
1
st
⁡
R
2
maxidlnr.2
⊢
X
=
ran
⁡
G
3
1
2
ismaxidl
⊢
R
∈
RingOps
→
M
∈
MaxIdl
⁡
R
↔
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
4
3
biimpa
⊢
R
∈
RingOps
∧
M
∈
MaxIdl
⁡
R
→
M
∈
Idl
⁡
R
∧
M
≠
X
∧
∀
j
∈
Idl
⁡
R
M
⊆
j
→
j
=
M
∨
j
=
X
5
4
simp2d
⊢
R
∈
RingOps
∧
M
∈
MaxIdl
⁡
R
→
M
≠
X