Metamath Proof Explorer


Theorem maxidlnr

Description: A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011)

Ref Expression
Hypotheses maxidlnr.1 G = 1 st R
maxidlnr.2 X = ran G
Assertion maxidlnr R RingOps M MaxIdl R M X

Proof

Step Hyp Ref Expression
1 maxidlnr.1 G = 1 st R
2 maxidlnr.2 X = ran G
3 1 2 ismaxidl R RingOps M MaxIdl R M Idl R M X j Idl R M j j = M j = X
4 3 biimpa R RingOps M MaxIdl R M Idl R M X j Idl R M j j = M j = X
5 4 simp2d R RingOps M MaxIdl R M X