Metamath Proof Explorer


Theorem mbfi1fseqlem2

Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Hypotheses mbfi1fseq.1 φFMblFn
mbfi1fseq.2 φF:0+∞
mbfi1fseq.3 J=m,yFy2m2m
mbfi1fseq.4 G=mxifxmmifmJxmmJxm0
Assertion mbfi1fseqlem2 AGA=xifxAAifAJxAAJxA0

Proof

Step Hyp Ref Expression
1 mbfi1fseq.1 φFMblFn
2 mbfi1fseq.2 φF:0+∞
3 mbfi1fseq.3 J=m,yFy2m2m
4 mbfi1fseq.4 G=mxifxmmifmJxmmJxm0
5 negeq m=Am=A
6 id m=Am=A
7 5 6 oveq12d m=Amm=AA
8 7 eleq2d m=AxmmxAA
9 oveq1 m=AmJx=AJx
10 9 6 breq12d m=AmJxmAJxA
11 10 9 6 ifbieq12d m=AifmJxmmJxm=ifAJxAAJxA
12 8 11 ifbieq1d m=AifxmmifmJxmmJxm0=ifxAAifAJxAAJxA0
13 12 mpteq2dv m=AxifxmmifmJxmmJxm0=xifxAAifAJxAAJxA0
14 reex V
15 14 mptex xifxAAifAJxAAJxA0V
16 13 4 15 fvmpt AGA=xifxAAifAJxAAJxA0