Metamath Proof Explorer


Theorem mbfmbfmOLD

Description: A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses mbfmbfmOLD.1 φMranmeasures
mbfmbfmOLD.2 φJTop
mbfmbfmOLD.3 φFdomMMblFnμ𝛔J
Assertion mbfmbfmOLD φFranMblFnμ

Proof

Step Hyp Ref Expression
1 mbfmbfmOLD.1 φMranmeasures
2 mbfmbfmOLD.2 φJTop
3 mbfmbfmOLD.3 φFdomMMblFnμ𝛔J
4 3 isanmbfm φFranMblFnμ