Metamath Proof Explorer


Theorem mbfmptcl

Description: Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014)

Ref Expression
Hypotheses mbfmptcl.1 φxABMblFn
mbfmptcl.2 φxABV
Assertion mbfmptcl φxAB

Proof

Step Hyp Ref Expression
1 mbfmptcl.1 φxABMblFn
2 mbfmptcl.2 φxABV
3 mbff xABMblFnxAB:domxAB
4 1 3 syl φxAB:domxAB
5 2 ralrimiva φxABV
6 dmmptg xABVdomxAB=A
7 5 6 syl φdomxAB=A
8 7 feq2d φxAB:domxABxAB:A
9 4 8 mpbid φxAB:A
10 9 fvmptelcdm φxAB