Metamath Proof Explorer


Theorem mdi

Description: Consequence of the modular pair property. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion mdi ACBCCCA𝑀BCBCAB=CAB

Proof

Step Hyp Ref Expression
1 mdbr ACBCA𝑀BxCxBxAB=xAB
2 1 biimpd ACBCA𝑀BxCxBxAB=xAB
3 sseq1 x=CxBCB
4 oveq1 x=CxA=CA
5 4 ineq1d x=CxAB=CAB
6 oveq1 x=CxAB=CAB
7 5 6 eqeq12d x=CxAB=xABCAB=CAB
8 3 7 imbi12d x=CxBxAB=xABCBCAB=CAB
9 8 rspcv CCxCxBxAB=xABCBCAB=CAB
10 2 9 sylan9 ACBCCCA𝑀BCBCAB=CAB
11 10 3impa ACBCCCA𝑀BCBCAB=CAB
12 11 imp32 ACBCCCA𝑀BCBCAB=CAB