Metamath Proof Explorer


Theorem mdsymlem4

Description: Lemma for mdsymi . This is the forward direction of Lemma 4(i) of Maeda p. 168. (Contributed by NM, 2-Jul-2004) (New usage is discouraged.)

Ref Expression
Hypotheses mdsymlem1.1 A C
mdsymlem1.2 B C
mdsymlem1.3 C = A p
Assertion mdsymlem4 p HAtoms B 𝑀 * A A 0 B 0 p A B q HAtoms r HAtoms p q r q A r B

Proof

Step Hyp Ref Expression
1 mdsymlem1.1 A C
2 mdsymlem1.2 B C
3 mdsymlem1.3 C = A p
4 1 2 3 mdsymlem2 p HAtoms B C A B 𝑀 * A p A B B 0 r HAtoms q HAtoms p q r q A r B
5 4 exp31 p HAtoms B C A B 𝑀 * A p A B B 0 r HAtoms q HAtoms p q r q A r B
6 5 com4t B 𝑀 * A p A B B 0 p HAtoms B C A r HAtoms q HAtoms p q r q A r B
7 6 ex B 𝑀 * A p A B B 0 p HAtoms B C A r HAtoms q HAtoms p q r q A r B
8 7 com23 B 𝑀 * A B 0 p A B p HAtoms B C A r HAtoms q HAtoms p q r q A r B
9 8 a1d B 𝑀 * A A 0 B 0 p A B p HAtoms B C A r HAtoms q HAtoms p q r q A r B
10 9 imp44 B 𝑀 * A A 0 B 0 p A B p HAtoms B C A r HAtoms q HAtoms p q r q A r B
11 10 com3l p HAtoms B C A B 𝑀 * A A 0 B 0 p A B r HAtoms q HAtoms p q r q A r B
12 1 2 3 mdsymlem3 p HAtoms ¬ B C A p A B A 0 r HAtoms q HAtoms p q r q A r B
13 12 anasss p HAtoms ¬ B C A p A B A 0 r HAtoms q HAtoms p q r q A r B
14 13 exp31 p HAtoms ¬ B C A p A B A 0 r HAtoms q HAtoms p q r q A r B
15 14 com3r p A B A 0 p HAtoms ¬ B C A r HAtoms q HAtoms p q r q A r B
16 15 ancoms A 0 p A B p HAtoms ¬ B C A r HAtoms q HAtoms p q r q A r B
17 16 adantlr A 0 B 0 p A B p HAtoms ¬ B C A r HAtoms q HAtoms p q r q A r B
18 17 adantl B 𝑀 * A A 0 B 0 p A B p HAtoms ¬ B C A r HAtoms q HAtoms p q r q A r B
19 18 com3l p HAtoms ¬ B C A B 𝑀 * A A 0 B 0 p A B r HAtoms q HAtoms p q r q A r B
20 11 19 pm2.61d p HAtoms B 𝑀 * A A 0 B 0 p A B r HAtoms q HAtoms p q r q A r B
21 rexcom r HAtoms q HAtoms p q r q A r B q HAtoms r HAtoms p q r q A r B
22 20 21 syl6ib p HAtoms B 𝑀 * A A 0 B 0 p A B q HAtoms r HAtoms p q r q A r B