Metamath Proof Explorer


Theorem meale0eq0

Description: A measure that is less than or equal to 0 is 0 . (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses meale0eq0.m φMMeas
meale0eq0.a φAdomM
meale0eq0.l φMA0
Assertion meale0eq0 φMA=0

Proof

Step Hyp Ref Expression
1 meale0eq0.m φMMeas
2 meale0eq0.a φAdomM
3 meale0eq0.l φMA0
4 eqid domM=domM
5 1 4 2 meaxrcl φMA*
6 0xr 0*
7 6 a1i φ0*
8 1 2 meage0 φ0MA
9 5 7 3 8 xrletrid φMA=0