Description: The union of three disjoint bijections is a bijection. (Contributed by metakunt, 28-May-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | metakunt17.1 | |
|
metakunt17.2 | |
||
metakunt17.3 | |
||
metakunt17.4 | |
||
metakunt17.5 | |
||
metakunt17.6 | |
||
metakunt17.7 | |
||
metakunt17.8 | |
||
metakunt17.9 | |
||
metakunt17.10 | |
||
metakunt17.11 | |
||
metakunt17.12 | |
||
Assertion | metakunt17 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | metakunt17.1 | |
|
2 | metakunt17.2 | |
|
3 | metakunt17.3 | |
|
4 | metakunt17.4 | |
|
5 | metakunt17.5 | |
|
6 | metakunt17.6 | |
|
7 | metakunt17.7 | |
|
8 | metakunt17.8 | |
|
9 | metakunt17.9 | |
|
10 | metakunt17.10 | |
|
11 | metakunt17.11 | |
|
12 | metakunt17.12 | |
|
13 | 4 7 | jca | |
14 | 1 2 13 | jca31 | |
15 | f1oun | |
|
16 | 14 15 | syl | |
17 | indir | |
|
18 | 5 6 | uneq12d | |
19 | 0un | |
|
20 | 19 | a1i | |
21 | 18 20 | eqtrd | |
22 | 17 21 | eqtrid | |
23 | indir | |
|
24 | 8 9 | uneq12d | |
25 | 24 20 | eqtrd | |
26 | 23 25 | eqtrid | |
27 | 22 26 | jca | |
28 | 16 3 27 | jca31 | |
29 | f1oun | |
|
30 | 28 29 | syl | |
31 | 10 11 12 | f1oeq123d | |
32 | 30 31 | mpbird | |