Metamath Proof Explorer


Theorem metakunt17

Description: The union of three disjoint bijections is a bijection. (Contributed by metakunt, 28-May-2024)

Ref Expression
Hypotheses metakunt17.1 φG:A1-1 ontoX
metakunt17.2 φH:B1-1 ontoY
metakunt17.3 φI:C1-1 ontoZ
metakunt17.4 φAB=
metakunt17.5 φAC=
metakunt17.6 φBC=
metakunt17.7 φXY=
metakunt17.8 φXZ=
metakunt17.9 φYZ=
metakunt17.10 φF=GHI
metakunt17.11 φD=ABC
metakunt17.12 φW=XYZ
Assertion metakunt17 φF:D1-1 ontoW

Proof

Step Hyp Ref Expression
1 metakunt17.1 φG:A1-1 ontoX
2 metakunt17.2 φH:B1-1 ontoY
3 metakunt17.3 φI:C1-1 ontoZ
4 metakunt17.4 φAB=
5 metakunt17.5 φAC=
6 metakunt17.6 φBC=
7 metakunt17.7 φXY=
8 metakunt17.8 φXZ=
9 metakunt17.9 φYZ=
10 metakunt17.10 φF=GHI
11 metakunt17.11 φD=ABC
12 metakunt17.12 φW=XYZ
13 4 7 jca φAB=XY=
14 1 2 13 jca31 φG:A1-1 ontoXH:B1-1 ontoYAB=XY=
15 f1oun G:A1-1 ontoXH:B1-1 ontoYAB=XY=GH:AB1-1 ontoXY
16 14 15 syl φGH:AB1-1 ontoXY
17 indir ABC=ACBC
18 5 6 uneq12d φACBC=
19 0un =
20 19 a1i φ=
21 18 20 eqtrd φACBC=
22 17 21 eqtrid φABC=
23 indir XYZ=XZYZ
24 8 9 uneq12d φXZYZ=
25 24 20 eqtrd φXZYZ=
26 23 25 eqtrid φXYZ=
27 22 26 jca φABC=XYZ=
28 16 3 27 jca31 φGH:AB1-1 ontoXYI:C1-1 ontoZABC=XYZ=
29 f1oun GH:AB1-1 ontoXYI:C1-1 ontoZABC=XYZ=GHI:ABC1-1 ontoXYZ
30 28 29 syl φGHI:ABC1-1 ontoXYZ
31 10 11 12 f1oeq123d φF:D1-1 ontoWGHI:ABC1-1 ontoXYZ
32 30 31 mpbird φF:D1-1 ontoW