Metamath Proof Explorer


Theorem metcnp4

Description: Two ways to say a mapping from metric C to metric D is continuous at point P . Theorem 14-4.3 of Gleason p. 240. (Contributed by NM, 17-May-2007) (Revised by Mario Carneiro, 4-May-2014)

Ref Expression
Hypotheses metcnp4.3 J=MetOpenC
metcnp4.4 K=MetOpenD
metcnp4.5 φC∞MetX
metcnp4.6 φD∞MetY
metcnp4.7 φPX
Assertion metcnp4 φFJCnPKPF:XYff:XftJPFftKFP

Proof

Step Hyp Ref Expression
1 metcnp4.3 J=MetOpenC
2 metcnp4.4 K=MetOpenD
3 metcnp4.5 φC∞MetX
4 metcnp4.6 φD∞MetY
5 metcnp4.7 φPX
6 1 met1stc C∞MetXJ1st𝜔
7 3 6 syl φJ1st𝜔
8 1 mopntopon C∞MetXJTopOnX
9 3 8 syl φJTopOnX
10 2 mopntopon D∞MetYKTopOnY
11 4 10 syl φKTopOnY
12 7 9 11 5 1stccnp φFJCnPKPF:XYff:XftJPFftKFP