Metamath Proof Explorer


Theorem metdcn

Description: The metric function of a metric space is always continuous in the topology generated by it. (Contributed by Mario Carneiro, 5-May-2014) (Revised by Mario Carneiro, 4-Sep-2015)

Ref Expression
Hypotheses xmetdcn2.1 J=MetOpenD
metdcn.2 K=TopOpenfld
Assertion metdcn DMetXDJ×tJCnK

Proof

Step Hyp Ref Expression
1 xmetdcn2.1 J=MetOpenD
2 metdcn.2 K=TopOpenfld
3 2 tgioo2 topGenran.=K𝑡
4 3 oveq2i J×tJCntopGenran.=J×tJCnK𝑡
5 2 cnfldtop KTop
6 cnrest2r KTopJ×tJCnK𝑡J×tJCnK
7 5 6 ax-mp J×tJCnK𝑡J×tJCnK
8 4 7 eqsstri J×tJCntopGenran.J×tJCnK
9 eqid topGenran.=topGenran.
10 1 9 metdcn2 DMetXDJ×tJCntopGenran.
11 8 10 sselid DMetXDJ×tJCnK